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We analyze discrete symmetry groups of vertex models in lattice statistical 
mechanics represented as groups of birational transformations. They can be seen 
as generated by involutions corresponding respectively to two kinds of transfor- 
mations on q x q matrices: the inversion of the q x q matrix and an (involutive) 
permutation of the entries of the matrix. We show that the analysis of the 
factorizations of the iterations of these transformations is a precious tool in the 
study of lattice models in statistical mechanics. This approach enables one to 
analyze two-dimensional q4-state vertex models as simply as three-dimensional 
vertex models, or higher-dimensional vertex models. Various examples of 
birational symmetries of vertex models are analyzed. A particular emphasis is 
devoted to a three-dimensional vertex model, the 64-state cubic vertex model, 
which exhibits a polynomial growth of the complexity of the calculations. 
A subcase of this general model is seen to yield integrable recursion relations. 
We also concentrate on a specific two-dimensional vertex model to see how the 
generic exponential growth of the calculations reduces to a polynomial growth 
when the model becomes Yang-Baxter integrable. It is also underlined that a 
polynomial growth of the complexity of these iterations can occur even for 
transformations yielding algebraic surfaces, or higher-dimensional algebraic 
varieties. 
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discrete dynamical systems; nonlinear recursion relations; iterations; integrable 
mappings; elliptic curves; Abelian surfaces; Jacobian of algebraic curves; 
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1. I N T R O D U C T I O N  
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exactly solvable models in lattice statistical mechanics. ~4-H) These involu- 
tions correspond respectively to two kinds of transformations on q x q 
matrices: the inversion of the q x q matrix and an (involutive) permutation 
of the entries of the matrix. 

The analysis of birational representations of discrete symmetry groups 
of the parameter space of vertex models has been a powerful tool in lattice 
statistical mechanics. ~4-1~1 The methods developed in these papers are of 
two different types: a systematic search of algebraic expressions invariant 
under these discrete groups of symmetries and a visualization of (two- 
dimensional projections of) the orbits of these groups of symmetries. When 
considering three-dimensional (or higher-dimensional) vertex models the 
number of parameters of these models quickly becomes large (64 homo- 
geneous parameters,...). It becomes difficult to get an exhaustive list of 
algebraic invariants of these groups, or equivalently the equations defining 
the algebraic variety corresponding to these orbits. From the point of view 
of effective algebraic geometry it is hard, because of the large number of the 
variables, to characterize the nature of the algebraic variety. On the other 
hand, the visualization of the orbits often provides a very efficient way to 
describe these orbits when they are fractal-like sets of points ~5"6) or, on the 
contrary, curves foliating the whole parameter space or even surfaces, the 
action of one of the infinite-order transformations being like a shift on a 
torus (see Fig. 1 in the following). However, it is much harder to get some 
hint on the very nature of these orbits when they look fuzzy (see, for 
instance, Fig. 2 in the following). For such cases these methods are no 
longer appropriate. There is a need for a complementary approach. The 
analysis of the factorization properties of these discrete groups of sym- 
metriestl 31 performed here provides such a complementary approach. In this 
framework a quite general three-dimensional vertex odel (64 homogeneous 
parameters) will surprisingly be seen as remarkably interesting. 

In refs. 1-3, permutations of the entries corresponding to permutations 
of two entries were analyzed. For these permutations, it has been shown 
that the iteration of the associated birational transformations presents 
some remarkable factorization properties. 1~'2~ These factorization proper- 
ties explain why the complexity of these iterations, instead of having the 
exponential growth one expects at first sight, may have a polynomial 
growth. I~z-~4) It has also been shown that the polynomial factors occurring 
in these factorizations can satisfy nonlinear reeursion relations and that 
some of these recursions are actually integrable yielding elliptic c u r v e s .  (1-3) 

These papers have tried, on simple examples of permutations, to shed 
some light on the relation between various structures and properties, 
such as the factorization of the iterations, the polynomial growth of 
the complexity, 1~'2"~2) and the integrability of the mappings, as well 
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as the nature  of the various algebraic  varieties preserved by these 
mappings.  

The structures,  concepts,  propert ies ,  and results that  emerged in these 
studies will be used here 2 for lattice models of statistical mechanics." vertex 
models and also (edge) spin models. The mappings  that  one considers here 
are b i ra t ional  representat ions  of symmetries  acting in the pa ramete r  space 
of vertex models  in two, three, or  even arbitrary dimensions.  

We will first concentra te  on a specific two-dimensional  q4-vertex 
model,  with emphasis  on q = 3, to see how the generic exponential growth 
of the calculations reduces to a polynomial growth when the model becomes 
Yang-Baxter integrable. Special a t tent ion will also be devoted to a three- 
d imensional  vertex model,  the 64-state cubic vertex model,  which exhibits 
a po lynomia l  growth of the complexi ty  of the calculations.  It will be shown 
that  a polynomial growth of the complexi ty  of these i terat ions can occur not  
only for t ransformat ions  yielding algebraic  curves, but  also for transforma- 
tions yielding algebraic surfaces, or higher-dimensional algebraic varieties. 3 
A par t icular  subcase of this three-dimensional  vertex model,  for which one 
of the infinite-order discrete symmetry  mappings  is integrable,  will be seen 
to yield remarkable  recursion relat ions (see Section 4.2.2) providing a new 
exact result on a three-dimensional  vertex model.  

This factorizat ion analysis provides a new approach  for qd-vertex 
models  with arbitrary number  q of colors  and arbitrary latt ice dimension d. 
In this new approach  for vertex models  the occurrence of polynomial growth 
becomes a necessary condi t ion for selecting interesting vertex models. 

2. G E N E R A L  F R A M E W O R K  A N D  N O T A T I O N S  

Let us consider  the more  general  vertex model  where one direction, 
denoted  direct ion 1, is singled out. Pictor ial ly  this can be interpreted as 
follows: 

L (2.1) 

J 

k 
(1) 

where i and k (corresponding to direct ion 1) can take q values, while J and 
L take m values. 

'-Except for a few reminders in Sections 3.1 and 4.2.1 and Appendix C of some results of the 
previously mentioned series of papers, all the results presented here are new. 

3 This happens at least when one can associate a Jacobian variety to these birational trans- 
formations, as will be seen in the following. 
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One can define a "partial" transposition on direction 1 denoted t~. The 
action of t~ on the R-matrix is given by t~~ 

(t, R)k, Jc __ R; Lks (2.2) 

The R-matrix is a (qm) x (qm) matrix which can be seen as qZ blocks which 
are m x m matrices: 

/ A l l ,  l ]  A[1 ,2 ]  A[1 ,3 ]  .-. Al l ,  q ] \  

/ A [ 2 , 1 ]  A[2 ,2 ]  A[-2,3] -.. ArZ, q ] ~  

R = ~ A [ 3 , 1 ]  A [ 3 , 2 ]  A[3 ,3 ]  ..... AE3.,q]) 

\ A [ q ,  1] A[q, 2] A[q, 3] .-- A [ q , q ] /  

(2.3) 

where A[1, 1], A[1, 2] ..... A[q, q] are m xm matrices. With these nota- 
tions the partial transposition t~ amounts to a permutation of matrices 
A[ct, fl] and A[fl, ct]. 

We use the same notations as in refs. 1-3, that is, we introduce the 
following transformations, the matrix inverse i and the homogeneous 
matrix inverse I: 

i: R ~ R -l (2.4) 

I: R ~de t (R) .R  -1 (2.5) 

The homogeneous inverse I is a polynomial transformation on each of the 
entries of matrix R, which associates with each entry its corresponding 
co factor. 

The two transformations t l and f are involutions and / 2 =  
(det(R))q,n-2. J d  where J d  denotes the identity transformation. 

We also introduce the (generically infinite-order) transformations 

K=t~ .I 

and (2.6) 

/ ~ = l  I " i  

Transformation k is clearly a bh'ational transformation on the entries of 
matrix R, since its inverse transformation is ,f . t l ,  which is obviously a 
rational transformation. K is a homogeneous polynomial transformation on 
the entries of matrix R. 
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3. T W O - D I M E N S I O N A L  V E R T E X  M O D E L S  

3.1. I te ra t ions  Associated w i t h  the  S i x t e e n - V e r t e x  M o d e l  

The 16-vertex model corresponds to the vertex of (2.1) and the 
R-matrix (2.3) with q = m = 2. In this case of 4 x 4 matrices, permutation tl 
has already been introduced in the framework of the symmetries of the 
16-vertex model, tl~ Namely, tl amounts to a permutation of two 2 x 2  
(off-diagonal) submatrices of the 4 x 4 matrix R. 

Remarkably, the symmetry group generated by the matrix inverse i 
and transformation t l, or the infinite generator K =  t l . I ,  has been shown 
to yield algebraic elliptic curves tl~ in CPIs. 

Let us consider a 4 x 4 matrix Mo and the successive matrices obtained 
by iteration of transformation K =  tt .L Remarkably, all the entries of the 
successive matrices obtained iterating K on Mo do factorize common poly- 
nomials. This enables us to introduce at each step reduced matrices, 
denoted M,,. Moreover, the determinants of these M,, also factorize. More 
precisely, similarly to factorizations described in refs. 1 and 2, one has the 
following factorizations for the iterations of K, (~) 

MI = K(Mo), M.. = K(MI ), FI = det(Mo), 

det(M2) K(M2) 
F._ =de t (M, ) ,  F3- -  F~ ' M 3 -  F,2 .... 

and for arbitrary n 

K(M,,+ i) det(M. + ,) (3.1) M , , + 2 -  F,] ' F.+-, - F,3 

One also has the following relation: 

K(M,,+._)- K(M,,+2) M,,+3 
det(M.+ 2)-F,,+ lF,,+ 3 

(3.2) 

One can also introduce a right action of K on matrices M,, or on any 
homogeneous polynomial expression of their entries (such as the F., for 
instance): the entries of matrix Mo are replaced by the entries of K(Mo). 
Amazingly, the right action of K on the F.  and on the matrices M,, 
factorizes FI and only FI,t 1) 

(M,,)K = M . + ,  .F;", (F.)K = F , ,+ , -F~ ~ (3.3) 
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Denoting ct,, the degree of the determinant of the matrix M.  and ft. the 
degree of the polynomial F,,, one immediately gets from equations (3.1) 
and (3.2) the following linear relations (with integer coefficients): 

~n+l = 3fl,, + fin+2, 3a.+l = a . + z  + 8ft. 

G,+ 2 + G,+ 3 = 4(fl,,+ 1 + ft.+3), 3ft. = ft.+, + 4#,,, 

yielding the generating functions 

x~(x )=(3x2+l ) . f l ( x ) ,  ( 3 x - 1 ) . c t ( x ) + 4 = 8 x Z . f l ( x )  

(1 +x) -0 t (x )=4( l  + x  2) . f l (x)+4 

3 ~ n  ----- 0~n + l + 16vn 

(3.4) 

(3.5) 

From these factorizations, one can easily deduce linear recursions on the 
series ~,,, fin, /~,, and v,, and then the following expressions for their 
generating functions: 

4(1 + 3x 2) 4x 
~(x) (1 - x )  3 ' fl(X)= (1 --X) --------~' 

X2(3 -- X) 2X 2 
~(x) ( l -x )  3' v(x)=(l_xp 

(3.6) 

The expressions of the degrees and exponents G,, fin, /~,,, and v,,, respec- 
tively, read 

G,=4(2n2 + 1), f l , ,=2n(n+l),  /a,, = n 2 -  1, v , , = n ( n - l )  (3.7) 

Let us also mention that, for a given initial matrix Mo, the successive 
iterates of M0 under transformation K 2 move in a three-dimensional affine 
projective space: 

K2"(Mo)=a(o"l .Mo+a~'~176 (3.8) 

K2"*l(Mo)=b(om.M~ +b~").M3+b~").Ms+b~3m.M 7 (3.9) 

. . . . . .  (or bg, b'~, b~, b") In terms of these homogeneous variables ao, a~, a z, a 3 3 

the transformation K is represented as a cubic (birational) homogeneous 
transformation: 

= }-'. Bi(Mo; No, Nl, N2, N3) 
No+ NI + N2+ N3= 3 

�9 (a(o")) N~ (a~")) N'" (a(~l) (a(nl) N33  with i=0 ,  1,2,3 

(3.10) 
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(the N,. are positive integers), and similarly 

bl") ~ a l  "+l)= ~ Ai(Mo;No, Ul,U2, U3) 
No+ NI + N2+ N3=3 
�9 woth("hN~ wlth(")~N~'J (b~")) N2. (b~")) m with i = 0, 1, 2, 3 

(3.11) 

Considering the points in CP~ 5 associated with the successive 4 x 4 matrices 
corresponding to the iteration of Mo under the t ransformat ion K (instead 
of K:) ,  one thus gets sets of points (lying on elliptic curves) which belong 
to two three-dimensional affine subspaces of CPIs ,  which also depend on the 
initial matrix Mo in a quite involved way. 

Amazingly, the F ,  satisfy a whole hierarchy of recursion relations, (l) 
such as 

2 F,, 2 2 2 Fn_lFn+2 - +3F, ' F , , F n + 3  - - F . + 4 F .  + 1 
(3.12) 

Fn_lFn+ 3Fn+4- FnFn+ lFn+ 5-Fn_2Fn+ 2Fn+ 3-Fn_lFnFn+4 

Let us recall that  this very recursion is integrable, yielding algebraic elliptic 
curves.(') 

Let us remark that, for the 16-vertex model, the two directions are 
equivalent. Therefore, in this factorization analysis, one can replace the 
transposit ion tl by the transposit ion on direction (2), denoted t2. It 
amounts  to a relabeling of the rows and columns of the R-matrix. In fact, 
the product  t~. tz is nothing but the "total" transposit ion of matrix R, and 
thus commutes  with L 

Let us now consider new examples of vertex models. 

3.2. q4-State Two-Dimensional Vertex Models 

Let us consider a generalization of the 16-vertex model for an 
arbi trary number  of spin values. It corresponds to m = q  for model (2.1). 
The matrix (2.3) is now a q2x q2 matrix. 

Similarly to the factorizations described in (3.1), one has the following 
factorizations for the iterations of K acting on Mo, a qZ x q2 matrix: 

MI = K(Mo), M2=K(M~),  F, = det(Mo), 

Fz = det (Ml  ), 

and for arbi t rary n 

K ( M n + l )  
M n + 9  -- 

- F q 2 _ 2  , 

det(M2) 
F3 = F q 2  1 .... 

det (M,, + 1 ) 
F ,+z  - q2 (3.13) 

F,, - 1 
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One recovers relation (3.2), independently o f  q: 

R(M.+2) = K(M,,+2) M.+3 (3.14) 
det(M,, + 2) F,,+ t F,,+ 3 

Moreover, the action of the transformation K again yields the factorization 
of FI and only FI, enabling us to define the exponents ~,, and v,,. 

It is clear that these factorizations are straightforward generalizations 
of the one described in Section 3.1. From these factorizations, one can 
easily get linear recursion relations for the exponents ~,,, fl,,, /~,,, and v,,: 

o~,+3-b~,,+2=q2"(fln+l-bfl,+3), 0~,+ t = (q2-- 1 ) - ~, -t-/~,,+ 2 

( q 2  1).~,,+~=c~,+.,+(q2--2)-/3,,  

(q ' - - -1) .[ t , ,=f l , ,+t+qz. l~ , , ,  ( q ' - - - 1 ) . ~ , , = G , + l + q Z . v , ,  

One deduces the relations in their 

x.c~(x) = [1 + (q- ' -  1)x 23 �9 ~(x), 

q2(q~_ _ 2) .  x2[l(x) = 

qZ . x#(x )  - q'-x = 

q4 . xv(x)  - q2 = 

(3.15) 

generating functions: 

(1 + x ) . ~ ( x ) = q 2 ( 1  + x 2 ) . f l ( x ) + q  2 

[ ( q 2 - 1 ) x - 1 ]  . ~ ( x ) + q  2 
(3.16) 

[ ( q 2  1 ) x - - 1 ] . f l ( x )  

[ ( q 2 - - 1 ) x - - 1 ]  .~(x) 

and the following expressions for these generating functions: 

~(x)- 

~(x)- 

q2. [1 + ( q 2 - 1 )  x z] 
( 1 - x ) . [ 1 - - ( q a - - 2 ) x + x 2 ]  

q2x 
(1 - x ) . [ 1  - ( q 2  _ 2 )x  + x 2] 

x2 . [ (q  2 -  1 ) - -x ]  

( i - x ) . [ - 1 -  (q2_2)  x + x  2] 

( q 2 - 2 )  .x 2 

( l - - x ) - [ 1  - ( q ' - - 2 ) x  + x 2] 

u ( x )  - 

v ( x )  - 

(3.17) 

The expressions of the exponents c~,, /3,,, p,,, and v,, clearly have (generi- 
cally) an exponential growth in terms o f n  when q is different from 2. This 
suggests that the q4-state vertex models are not generically "good 
candidates" for integrability when the number of colors q is no longer 2. 

Let us recall that a polynomial growth of the calculations corresponds 
to cases where the roots of the denominators of the generating functions 
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~(x), /3(x) .... are Nth roots of unity. On the explicit expressions (3.17) one 
sees that such a situation can only occur when q2 is a Tutte-Beraha 
ll bl/Tlbe /', ( 15,16 ) 

1 
q - ~ = 2 + t + - ,  with t 'V= l  for some integer N (3.18) 

t 

A polynomial growth behavior cannot  generically occur when q is an 
integer different from 2 (or 0...). In general, one does not expect the bira- 
tional transformations defined in refs. 1-3 from permutations of entries of 
a q x q  matrix to be integrable mappings. 4 It is, however, important  to 
recall that integrable cases are not ruled out even when q is an integer 
different from 2. 

3.3. From Exponential Growth  to Integrabil i ty 

It is known that there do exist "Yang-Baxter-integrable" subcases of 
the generic 9 •  matrix (and more generally of the generic q2• 
matrix~S~): how is it possible for such integrable cases to survive in such 
a "hostile framework" (exponential growth of the complexity...)? Do  these 
restrictions on the 9 • 9 matrices change the (generic) exponential growth 
of the calculations into a polynomial one? 

For  heuristic reasons let us, for example, consider a simple pattern 
for a 9 •  matrix corresponding to a vertex model introduced by 
Stroganov, t~9 

Rstrog 

1 0 0 0 b 0 0 0 b 

0 0 0 c 0 0 0 0 0 

0 0 0 0 0 0 c 0 0 

0 c 0 0 0 0 0 0 0 

b 0 0 0 1 0 0 0 b 

0 0 0 0 0 0 0 c 0 

0 0 c 0 0 0 0 0 0 

0 0 0 0 0 c 0 0 0 

b 0 0 0 b 0 0 0 1 

(3.19) 

4 II is. however, worth recalling the example of the q-state standard scalar Ports model, for 
which, using the Lieb-Temperley algebra, one can give a matrix representation in terms of 
matrices of sizes hulependent o f  q, q becoming a parameter in the entries of these matrices. "71 
Therefore one can also imagine being able to define the birational transformations K for 
nonhlteger l,alues ofq. 
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This model  is known to possess two "Yang-Baxter - in tegrab le"  subcases"9~: 

1 - b  
c = 1 - b and c = - -  (3.20) 

l + b  

When  restricted to one of the two integrabi l i ty  subcases (3.20), the par t i t ion  
function of this model  can easily be calculated using the inversion tr ick,  ctg) 

We consider  this example because it is simple (only two parameters  and a 
single one in the integrable subcases) and yields a ra t iona l  paramet r iza t ion  
of the integrable subcases of the m o d e l )  We restrict considera t ion  to the 
first integrable subcase (3.20): c = 1 - b .  

Let us first remark  that,  in this ( ra t ional )  subcase, all the b i ra t ional  
t ransformat ion symmetries  we consider  are jus t  h o m o g r a p h i c  t ransforma-  
tions. F o r  instance, the t ransformat ions  t t ,  /, and K" read 

K: b --* - -  

t l :  b ~ c = l - b  

- b  
I: b ~ - -  

l + b  

2b + 1 N , , ( b )  
K":  b --* - -  

b + 1 ' D , ( b )  

(3.21) 

where the numera tors  and denomina tors  of the first successive homo-  
graphies K" respectively read 

NI = 2b + 1, N2 = 5b + 3, N 3 = 13b + 8, N 4 = 34b + 21 .... 

D t = b + l ,  D 2 = 3 b + 2 ,  D 3 = 8 b + 5 ,  D 4 = 2 1 b + 1 3 ,  D s = 5 5 b + 3 4  .... 

(3.22) 

These successive polynomials  can be shown to satisfy the following 
recurrences: 

N .  + t = 2N, ,  + D . ,  D,, + 1 = N .  + D,,  (3.23) 

The F,, and the entries of the successive matrices M,,, previously defined for 
generic 9 x 9 matrices [see (3.13) with q = 3],  do  factorize: 

FI = - -Nl  �9 ( b -  1)8, F :  = - N  2 �9 (b - 1)63. b 8, F3 = - N 3 "  (b - 1 )440 b63 

5 Of course the reader can, as an exercise, replace this model and this form of the 9 • 9 matrix 
(3.19) by other "Yang-Baxter-integrable" 9 • 9 matrix patterns, for instance, the solvable 
q4-state models introduced in ref. 18 among many other possibilities. 
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and for a rb i t ra ry  n 

F,, = - N , .  ( b - -  1) r" - b " - '  (3.24) 

where the r ,  are the coefficients of the ra t ional  function 

1 + 7x 2 - x 3 
r ( x ) = l + r l . x + r 2 . x 2 + r 3 . x 3 +  . . . .  ( ! - - x ) ( 1 - 7 x + x  2) (3.25) 

All the enmes  of the M,, factorize the same polynomial ,  which enables us 
to in t roduce new matrices Mi,, m whose entries are polynomial expressions 
in b :  

M, : - M ' ,  m - ( b -  1) 7, M z =  - M  str~ . ( b -  1 )  56 .b 7, 

M 3 = - M ~  "~- (b - 1 )392. b 5 6  .. . .  

and for a rb i t ra ry  n 

M,, = -M~,  nt. ( b -  1) ..... b ~'-~ (3.26) 

where the s ,  are the coefficients of the ra t ional  function 

1 - x + 8x 2 - x 3 
s ( x ) =  1 + s~ . x  + s~.xZ + s3 .x3  + . . . .  

(1 - -x) (1  - 7 x + x  2) 
(3.27) 

form in terms of the N ,  and D , :  

M ~  ~ = 

D,, 0 0 0 N ,  0 0 0 N,, 

0 0 0 - N,,_ l 0 0 0 0 0 

0 0 0 0 0 0 - N,, _ l 0 0 

0 - N , , _  I 0 0 0 0 0 0 0 

N ,  . 0 0 0 D ,  0 0 0 N ,  

0 0 0 0 0 0 0 - - N , _ ~  0 

0 0 - N , , _  l 0 0 0 0 0 0 

0 0 0 0 0 - N , ,  , 0 0 0 

N ,  0 0 0 N ,  0 0 0 D ,  

(3.28) 

Let us see how these new factorizat ions (3.24) and (3.26) are actually com- 
patible with the generic ones (3.13). 

The new (highly) factorized matrices M~,, "t have a remarkably  simple 
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As it should, this matrix (up to the normalization of R[1, 1]) has 
exactly the same form as (3.19) where b has been changed into K"(b) 
I-taking relation (3.23) into account]. The determinant of Mi,, "t can easily 
be calculated: 

det(M ~ t) = - N  6_ ,.  (2N, + D, ) .  ( N , - D , , )  2 (3.29) 

Recalling recursions (3.23), we have that this expression reads 

det(Mi"'~ - -N, ,  + l �9 N8 (3.30) 
x - -  n J - -  n - I 

Recalling (3.24), (3.26), and (3.30) and factorization (3.13) for q =  3, one 
can write 

det(M,, + t ) int det(M,, + t).  (b - 1 )9s .+, .  b9S, 
F, ,+2-  rS,, - [ _ U  .(b__l)r..br,_,]8 

= -N,,+2.(b-1)9s"+'-Sr".b9S"-8"'-'  (3.31) 

This compatibility between the factorizations for the generic 9 • 9 matrices 
(exponential growth ) and the one for the Stroganov model (3.19) corresponds 
to the following relation on the r,, the s,,, and the ft, : 

fl,,+z=9(s,,+lWsn)--8(r. Wr,, 1 ) + 1  (3.32) 

or, in terms of the associated generating functions fl(x), r(x), and s(x), 

f l ( x )=9x . (1  + x ) . s ( x ) -  8x 2.(1 + x ) . r ( x )  

1 
+ - 1 - 2 x + 7 x 2 + 8 x  3 (3.33) 

1 - x  

which is verified. 

3.4. Stroganov's Model  Outside the Yang-Baxter  Integrabil i ty 

When Stroganov's model is no longer restricted to the Yang-Baxter 
integrability conditions (3.20), the model, despite its simplicity [only two 
parameters, and a very simple form for the q2x q2 R-matrix (3.19),...] is 
not known to be integrable. 

Let us examine the factorization properties outside the integrability 
conditions (3.20) [that is, in the whole (b, c) parameter space]. The first 
factorizations read 

F l = - c 6 " ( 2 b + l ) . ( b - 1 )  2, F z = c S l b 6 ( b - 1 ) 9 . h l . g ~  .... (3.34) 
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with 

g l = - l - b + 2 b ' - + c + b c ,  h l = - 2 - 2 b + 4 b 2 - b c - c  (3.35) 

All the entries of the matrix M .  factorize the same polynomial ,  which 
enables us to introduce new matrices M, str~ whose entries are polynomial 

expressions in b and c: 

Ml-a'4"str~ M2 --a'4Str~ ( b - l )  8"c45 gl .... (3.36) 
- - ~ ' A  I ~ " =  2 ' " 

Furthermore,  

de t (M s'r~ = c6b 6 .h r .  g~, 
(3.37) 

de t (M s'r~ = c6b6(b - 1 )6. (2b + 1) 8./72- g~ .... 

with 

g2 = 2 -- 6b 2 + 4b 3 - c - cb + 2b2c - c 2 - bc 2 

h2 = 4 +  8 b - 1 2 b Z - 1 6 b  3 + 1 6 b 4 - 2 c - 3 c b  (3.38) 

+ 3b% + 2b3c - 2c 2 - 3bc 2 - b2c 2 

The successive "reduced" matrices M ]  'r~ also have a simple form slightly 
generalizing (3.28): 

[A,, 0 

0 0 

0 0 

0 - C.  
Mstrog__ B,, 0 

0 0 

0 0 

0 0 

B. 0 

0 0 B,, 0 0 0 

0 - C,, 0 0 0 0 

0 0 0 0 - C. 0 

0 0 0 0 0 0 

0 0 A .  0 0 0 

0 0 0 0 0 - C .  

- C,, 0 0 0 0 0 

0 0 0 - C , ,  0 0 

0 0 B,, 0 0 0 

911 
0 

0 

0 

B,, (3.39) 

0 

0 

0 

A. 

There is no longer a relation between the A,,, B. ,  and C,, [-like C,, = B ._  
for (3.28)]. With this particular form (3.39) the determinant  of the 
"reduced" matrix factorizes, at least, as follows: 

S t r o g  d e t ( M ,  ) = - C  6. (2B, + A, ) -  ( B , , -  A,)  2 (3.40) 

The previous expressions g~, hi, g2, h2 simply read 

g l = B , - A l ,  h l = 2 B t + A l ,  g 2 = B 2 - A 2 ,  h z = 2 B z + A 2  (3.41) 
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Therefore one has a representation of K as a birational transformation 
in CP2 : 

(A.,  B.,  C . ) ~  (A,,+I, B,,+I, C.+1) 

C. .  (B. + A,,), �9 (2B. + =( -if,: ( B~ - A ~ ) A ,, ) , % ._C,, ) H.  H.  J (3.42) 

and a representation of K-I :  

(A., B., C.)--,  (A._ 1, W._~, C._1) 

B . . ( C . - - A , , )  -B , , .C , ,  ( A , , + C . ) . ( A . - 2 C . ) ~  
= L,, ' L,, ' L~, J (3.43) 

where H.  is the GCD polynomial of C..  (B,, + A.), (B.--  A . ) .  (2B. + A.), 
and B,, .C.  and, similarly, L. is the GCD polynomial of B. . (C . - -A , , ) ,  
- B . .  C., (A,, + C.) .  ( A . -  2C.), respectively. The transformation (3.42) 
can be written in a compact way: 

Strog 
/vtstro~ _ K ( M .  ) (3.44) 

H .  

The first A,,, B., C. read 

A o = l ,  

A, = - c . ( b +  1), 

Bo = b, Co = - c  

B 1 = ( b -  1 ) . (2b+  1), C1 = -bc  

A2 = - b c .  (2b 2 - b - c -  b c -  1) (3.45) 

B 2 = (2b 2 - b + c + b c -  1). (4b 2 - 2 b -  c -  bc - 2) 

C2= - b c . ( b -  1 ) . ( 2b+  1) .... 

Introducing the polynomials 

X , , = B . _ I - - A . _ ~ ,  Y . = 2 B . _ I + A , , _ I ,  Z . = B , , _ I + A . _ ~  (3.46) 

we find that the polynomials A.+ ~, B.+ ~, C.+~ simply read 

c,, z x,, c .  
A,,+I =--'H. "' B.+I =-~, .  Y., C,,+l =--~.B,,  (3.47) 

The polynomials Y,, and Z.  do not factorize, with the polynomials X. and 
the polynomials C,, (more precisely the C._ ~) are divisible by H.. Defining 
the polynomial X~ by 

X H=X" (3.48) ,i H. 
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one remarks  that these X,, n do not factorize. M o r e o v e r ,  one  a l so  r e m a r k s  

t h a t  H .  is a c t u a l l y  e q u a l  to  Y . - 2 .  The first expressions of the G C D  H,, (or 
equivalently of the Y . - 2 )  read 

H3 = Yl = 2 b +  1, H4= Y 2 = 4 b 2 - 2 b - 2 - b c - e  

H5  = Y3 = 4 - 3bc  - 12b 2 + 8b - 2c + 2b3c  (3.49) 

+ 3b2c - b2c 2 _ 3bc  2 - 2c  z + 16b 4 - 16b 3 .... 

In terms of these X,n,, Y, , ,  and Z . ,  the A,,, B,,, and C.  are 

An+,=Xff_2.Xff_3.X~_4...XH.Bo. Co.Zn+I 

- /4 �9 Y , ,+ l  (3.50) B .  + ~ - X .  + 

- /4 /4 /4 " " X n l  "Bo C o  Y , ,  C .  + l - X . _  l " X . _  2" X . _  3 " " 

A more complete list of the successive expressions of Xff, Y., Z,, is given 
in Appendix A. 

Representations (3.42) and (3.43) are nothing but the t ransformat ion 
K (or K -1)  represented as a birational t ransformat ion on (b, c). Let us, for 
instance, give the representation of I and t~ as b i r a t i o n a l  t ransformations 
on (b, c): 

( - b  (1 + 2 b ) . ( l c b )  ) 
I: ( b , c ) - - *  " l ~ - b '  - ( l + - b ) ~  , t , :  ( b , c ) ~ ( c , b )  (3 .51)  

Let us denote d. the degree of polynomials  A .  (or B,, or C,,) and d ( x )  

the associated generating function. The degrees of the X,, n, Y., and Z . ,  
denoted d,, x, d,, r, d,  z, respectively, satisfy 

_ /4 yields The relation B,, + l - X,, + l " Yn + 1 

d , , = d ~ , + d , ~ , = l + d , , _ 2 + d , , _ , ,  d ( x ) . ( 1 - x - x 2 )  - -  

(3.52) 

1 
= 0  (3.53) 

1 - - x  

Thus d ( x )  reads 

d ( x )  = 1 + d l  �9 x + d 2 �9 x 2 "-k d 3 �9 x 3 "-1- . . . .  
( l - x ) . ( 1 - x - x  2) 

= 1 + 2x + 4x 2 + 7x 3 + 12x 4 -4- 20x 5 + 33x 6 

+ 54x 7 + 88x 8 + 143x 9 + 232x ~~ + . . .  (3.54) 

822/78/5-6.2 
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The generating function d(x) corresponds to an exponential growth of the 
complexity of the iterations like z" where z is the largest root of 1 + z -  z z 
(z = 1.618033989...). This growth has to be compared with the exponential 
growth corresponding to the generic 9 x 9 matrices (see Section 3.2), for 
which one has an exponential growth like z" where z is the largest root of 
1 - 7z + z 2 (z = 6.854101966...). 

This exponential growth for model (3.19) is confirmed by the fact that, 
seeking algebraic expressions of b and c [Pl(b, c)/Ql(b, c)] invariant under 
the transformation K [or the transformation I and t~ ; see (3.51)-I, we have 
not found any such expressions up degree ten in b and c for Pl(b, c) and 
Ql(b, c). One expects a quite "chaotic" behavior for the iterations of K out- 
side the two integrability conditions (3.20). 

3.5. Back to Integrabil ity: The Inversion Trick 

Since we claim that the various polynomials of the two variables (b, c) 
previously introduced (A,,, B,,, C, ,  Xy ,  Y,,, Z,,,...) may be useful for a 
better understanding of Stroganov's model outside the Yang-Baxter 
integrability conditions (3.20), it is natural to look at these polynomials 
when restricted to the Yang-Baxter integrability conditions (3.20). For this 
purpose let us recall the (rational) well-suited parametrization of the model 
restricted to (3.20) (more precisely, c =  1 - b ) :  

b=~X-O.~-~  1 + x//5 
, where ~ o = - -  (3.55) 

l + x  2 

and the expression of the partition function per site deduced from the 
inversion trick, ~ 

Z(b, 1 - b ) = o )  2 x / ~  .F(x).F(1/x) " T-- x (3.56) 

where F(x) is an Eulerian product: 

F ( x ) =  I-] I ~sT-~_ '  1 0)8-/-.+,_ (3.57) 
k ~ ],.... r 

The expressions of the first Xf,  Y,,, Z,, read, in terms of the variable x of 
(3.55), 

X - - O )  2 r  - -  O~ - 2  ( O 3 X  -.F r  - j  

X f  ~(1 + x ) '  Yl r + x )  ' Z, o~(1 + x )  
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H ( X  - -  0 ) 2 ) ( 0 ) 2 X  - -  1 ) 
X 2 = (I + x )  2 0)z 

Y2 
(X - -  0)2)(0)6X - -  0) - 4 )  

( 1 + x) z 09 2 

Z 2 
(x - 0)'-)(0)5x + o~ -3)  

(1 + x )  2 0)2 

x H  __ (X - -  0)2)2 (X - -  (D - 2 ) ( X  - -  0) --6) 0)5 

3 - -  (1 + x )  3 (0)6x-- 1) 

(X - -  0)2)  2 (X - -  0 ) -  2) (X - -  0) - -14)  0)6 

Y3= (1 + x )  4 

(x -o ) ' - ) ' -  (x + 0)-  ' 2 ) ( x - 0 )  - 2) 0)5 
Z 3 =  (1 + x )  4 .... (3.58) 

It is clear that the polynomials X,~, Y,, Z ...... are closely related to the 
various factors occurring i n  the partition function (3.56), and more 
precisely in the "Eulerian" product  (3.57). 

When one considers weak-graph expansions t2~ of this vertex model 
when it is no longer restricted to the Yang-Baxter  integrability conditions 
(3.20), the "complexity" of the polynomials in b and e is very similar to 
that encountered with polynomials X,, n, Y,,, Z ...... seen as polynomials of 
the two variables b and c (see Appendix A). One can hope that these poly- 
nomials are well-suited to "decipher" the complexity encountered in weak- 
graph expansions of models which are not Yang-Baxter  integrable. 12~'22) 

Therefore the following question arises: Is it possible that the inversion 
trick ~4'19"z3~ could, using such polynomials well-suited for the factorization 
analysis, yield an expansion in agreement with the weak-graph expansion? 
This would open a new class of models in lattice statistical mechanics: 
models which are "computable"  without being "Yang-Baxter  integrable. ''6 
We will address this very important  question in forthcoming publications. 
We, however, have a negative prejudice on this model, since the birational 
transformations K are not generically integrable [no  foliation of the (b, c) 
plane in algebraic elliptic curves, chaotic behavior of the iteration of K 

6 Such models do exist: for instance, disorder solutions 124'25~ provide some examples of 
"computable" models that are not Yang-Baxter-integrable. However, such disorder solutions 
correspond to dimensional reductions of the model. We are seeking here two-dimensional 
(or higher-dimensional) models with a genuine two-dimensional complexity. 
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outside the integrability conditions, exponential  growth,...]. Therefore we 
will address this "computabi l i ty-versus-Yang-Baxter- integrabi l i ty"  question 
on better suited models for which a foliation of the whole parameter space 
in terms of (algebraic) elliptic curves does exist. 7 The existence of these 
elliptic curves yields analyticity properties in one variable which are known 
to be a key ingredient for  the inversion trick to work. ~26 281 

3.6. Stroganov's Model for q~>4 

These calculations can straightforwardly be generalized to arbi t rary q, 
that  is, q2x  q2 matrices. 

The way the exponential  growth "degenerates" into a polynomial  or 
linear growth [here, for model (3.28), the situation is even more  drastic: 
there is no growth; seen as a homogeneous  t ransformation,  the degree of 
the N ,  or D,, is 1 ] is exactly the same as for q = 3. We have again factoriza- 
tions (3.24) and (3.26), but now the generating functions r(x) and s(x)  are, 
respectively, for arbi trary q, 

r ( x )  = 

s ( x )  = 

1 + ( q 2 _ 2 )  x 2 - x  3 x [ ( q  2 -  1 ) - x ]  

( 1 - x ) [ 1 - ( q 2 - 2 ) x + x ' - ] -  1 + ( 1 - x ) [ 1 - ( q 2 - 2 ) x + x  23 

(3.59) 

l - x +  ( qZ _ 1) xZ _ x3 ( q Z - 2 ) x  

( l - x ) [ 1 -  ( q 2 - 2 ) x + x  z] = 1 + ( l - x ) [ 1 -  ( q - ' - 2 ) x + x  el 

(3.60) 

The compatibil i ty relation between factorizations (3.24) and (3.26) and the 
generic factorizations (3.13) reads 

ft,+2 = q2(s,+ i + s , ) - ( q 2 _  1)(r,, + r,,_ 1) + 1 (3.61) 

yielding for the associated generating functions c~(x), r(x), and s(x) 

fl(x) = (1 + x)[q2xs(x)  -- (qZ _ 1 ) x2r(x) ] 

1 
+ - - l - - 2 x + ( q 2 - - 2 ) x 2 + ( q Z - - 1 ) x  3 (3.62) 

l - - x  

7We have called these models "quasiintegrable. ''~m~ The most spectacular example of 
such a quasiintegrable, but not (generically) Yang-Baxter-integrable, model is the 16-vertex 
model. II~ 
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Let us note that s(x) has a remarkably simple form for q- '=  2. Let us also 
note that the difference between r(x) and s(x)  is quite simple: 

X 

r(x)  = s (x )  + 1 - (q2 _ 2) x + x-' (3.63) 

Of course this does not completely rule out integrability for q different 
from 2: many integrable subcases of the q4-state vertex model are known 
in the literature, but the corresponding patterns of the R-matrices are very 
specific. (29~ 

In contrast, it will be seen in Section 5 that polynomial  growth occurs 
when some of the "arrows" of the vertex models take two colors. It will 
be seen that this polynomial  growth is closely related to the fact that the 
transformation K can thus be represented as a shift on a Jacobian variet), 
naturally associated with K. 

4. T H R E E - D I M E N S I O N A L  VERTEX MODELS 

4.1. Introduction 

Let us now recall that, for a three-dimensional cubic v e r t e x  model, (8'9) 
the transposition t~ associated with one of the three directions of the cubic 
lattice has already been introduced~8"9~: 

I ~  n/ 
i l 

./ 

The action of t~ on the three-dimensional R-matrix is given by 

(t, R)~'i)[~, = R fi'122~3 (4.1) 

with similar definitions for 12 and /'3 .(8"91 

Such a situation corresponds to m = q2 in the framework described in 
Section 2. Of  course, one can define t2 and t 3 o n  this model because the 
q2-dimensional space decomposes into the tensorial product  of two 
q-dimensional spaces. 

We will restrict consideration in this section to q = 2; the results for an 
arbitrary value of q are given in Section 5. The analysis of the factorizations 
corresponding to the iterations of the transformation K for t~ for a general 
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64-state three-dimensional model (generic 8 x 8 matrix) gives the following 
factorizations: 

det(Ml) 
M~ = K(Mo), f t  = det(Mo), f2 - f4  

MR -- K(MI ) det(M2) 
.f~ , f3 = --$5---7~ 

f l  "f2 

K(M2) det(M3) 
M 3 - f ~ . f ~ ,  f 4 = f ~  7 4 "f2 "f3 

K(M 3) det(M 4) 
M4-f61 . f~  . f~ ,  f s -  8 8 f 7  jc4 f l  " f2"J3"J4  

(4.2) 

and, for arbitrary n, the following "stringlike" factorizations: 

K(M,,) = M,,+ ~ . f 3  . f ~ _  ~ " ( f , - 2  " f , ,-3"" " f~)6 (4.3) 

4 7 det(M,, )=f , ,+j  " f n ' f , , - ~  " ( f , , - 2 " f , , - 3 " f , - 4 " " f ~ )  8 (4.4) 

yielding 

I~(M,,) K(M,,) M,,+ , (4.5) )2 det(M,,) (f, " f2""f , , - ,  "f,,'f,,+~ 

From the factorization (4.5), one easily gets a relation between the gener- 
ating functions ct(x) and fl(x): 

8(1 + x  2) 
(1 + x) c~(x) - - f l ( x ) -  8 = 0  (4.6) 

1 - x  

leading to 

8(1 + x )  3 8x 
ct(x)- ( 1 - x )  --------~'' fl(x) ( l - x )  3 (4.7) 

The "right action" of K also yields factorizations off~ and onlyf~ : one gets 
again Eqs. (3.3) (with of course different expressions for the /~,, and v,,). 
These equations, combined with (4.6), give the following expressions for 
p(x) and v(x): 

x(1 + x)(4 -- x) x(3 + 2x + x 2) 
# ( x ) -  (1 - - x )  3 ' v ( x ) -  (1 --x) 4 (4.8) 
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One notes that  c~, and  fin are, respectively, cubic and quadratic functions of 
n [ to  be compared  with (3.7)]:  

c~,,=~(2n+ l)(2n2 + 2n+ 3), fl,,=4n(n+ l)  (4.9) 

At first sight it is amazing that such a polynomial growth occurs with 
involved "stringlike" factorizations, such as (4.3) and (4.4). 

The occurrence of polynomial growth of the calculations of the iterations 
could correspond to situations where the algebraic varieties generated by K 
are Abelian varietiesJ 3~ One knows that  a lgebraic  varieties having an 
infinite set of automorphisms cannot  be of the so-called general type. (z8~'8 
This is the case here: we actual ly  use the symmetr ies  of  the a lgebraic  
varieties (b i ra t ional  au tomorph i sms)  to visualize themJ 5"6'8'9"111 

The analysis of the i terat ions of the t ransformat ion K has been per- 
formed in more  detail  for a par t icular  8 • 8 matr ix  cor responding  to a three- 
dimensional  general izat ion of the Baxter model.  ~8"9~ This analysis shows 
that  the orbi ts  of the i terat ions lie, in this subcase, (8'9) on an algebraic 
sulface given by the intersection of quadrics. (8"9~ We will come back to this 
model  in Section 4.1.1. 

F o r  the general 8 • 8-matrix considered here, the orbits  do  not  lie on 
algebraic surfaces, but  on higher-dimensional  varieties. 18'9~ In t roducing  
Pliicker-like variables closely related to the minors of the R-matr ix,  l~'3J here 
4 • 4 minors,  one can, for this three-dimensional  vertex model,  explicitly 
write down the equat ions  of these algebraic  varieties as the intersection of 
quartics. In fact, the analysis of these algebraic varieties ~7-9~ is difficult to 
perform: are these varieties Abelian varieties, or even products of elliptic 
c u r v e s ,  9 o r  any o ther  algebraic varieties which are not of the so-called 
"general type "~28~ (like K3 surfaces, ~~ ...)? We hope that  the occurrence of 
polynomial  growth of the associated i terat ions could help to clarify the 
kind of algebraic varieties associated with these b i ra t ional  t ransformations.  

On the other  hand,  this could provide a new way to analyze three- or 
higher-dimensional vertex models. Of course, it is necessary to analyze 
shnultaneously not only K, but  also K,2 and K,~, the b i ra t ional  t ransforma-  
tions cor responding  to the two other  direct ions of the cubic lattice and to 
their associated par t ia l  t ransposi t ions  t2 and t3. 

8 Examples of algebraic varieties which are not of the general type are, for instance, in the 
case of surfaces, Abelian surfaces, hyperelliptic surfaces (surface fibered over CP~ by a 
pencil of elliptic curves), Enriques surfaces,.... 

9 There exist some systematic procedures to see if an algebraic surface is a product of curves, 
but they are extremely difficult to implement. 

~0 The birational transformations considered here actually densify in a quite "uniform way" 
the algebraic surfaces we get (see Figs. la-lc): this seems to exclude automorphisms of K3 
surfaces. 
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Let us try to better understand the relation between polynomial 
growth and the occurrence of various examples of algebraic varieties which 
not of the "general type." 

For this purpose we now examine different subeases of this three- 
dimensional vertex model. A first subcase providing an example of a quad- 
ratic growth associated with algebraic smfaces which are the product of  two 
algebraic elliptic curves is detailed in Appendix B1. 

4.2. A Three-Dimensional  Generalization of the Baxter Model  

Another (less academic) example of "'restricted factorization" corre- 
sponds to vertex models defined in refs. 8, 9, and 31, which can be seen 
as a three-dimensional generalization of the Baxter model. This model 
corresponds to the following K-compatible conditions: 

Ri l i2 i3  ~ - -  J,i,.J3 R- j l .  -,'-'-i3-jz,-j~ (4.10) 

Rili2i3 •o if i l i2i3j l j2j3= --i (4.11) 
Jl J2 J3 

Let us assume that the order for the "in" triplet (i~, i,, i3) as well as 
the "out" triplet (j~, J2, J3) is as follows: 

[ ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) ]  

= [ ( + : ,  + l ,  + l ) , ( + : ,  + 1 , - 1 ) ,  

( + 1 , - 1 ,  + 1 ) , ( + 1 , - 1 , - 1 ) , ( - 1 ,  + I ,  +1),  

( - 1 ,  + 1 , - 1 ) , ( - 1 , - 1 ,  + 1 ) , ( - - 1 , - - 1 , - 1 ) ]  (4.12) 

This order singles out direction 1, and is therefore well-suited to 
analyze the transformation K. 

With this ordering, conditions (4.10) and (4.11) yield the following 
8 x 8 matrix: 

R 3 d  _-- 

/a  0 0 k 0 / 177 0 
0 b c 0 n 0 0 d 

O e f O p O O g  

q O O  h O i j O 

O j i O h O 0 q 

g O O p O f e  0 
d O  0 17 0 c b 0 

0 177 I 0 k 0 0 a 

(4.13) 
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With another order for the rows and columns [namely 
(1, 2, 3, 4, 5, 6, 7, 8) ~ (1, 4, 6, 7, 8, 5, 3, 2)], this 8 x 8 matrix can be seen as 
two identical 4 x 4 block matrices: 

( i k )  m BSd= h i (4.14) 
P f 
n c 

These two block matrices are respectively associated to the two "odd" and 
"even" subspaces: 

[ ( + l ,  + l ,  + l ) , ( + l ,  - 1 ,  - l ) , ( - 1 ,  + l ,  - 1 ) , ( - 1 ,  - 1 ,  + l ) ]  

and 

[ ( - 1 , - 1 , - 1 ) , ( - 1 ,  +1,  + 1 ) , ( + 1 , - 1 ,  + 1 ) , ( + 1 ,  + I , - 1 ) ]  

With this new order the three directions 1, 2, and 3 are on the same foot- 
ing: it is better suited to analyze the group generated by all the (four) 
inversion relations of this three-dimensional vertex model ~8'9) (of course the 
transformation t~ becomes a more involved permutation of the entries). 

For this three-dimensional generalization of the eight-vertex modet,~9"3~ 
introducing the same f ,  as the ones given by (4.2)-(4.4), one verifies the 
factorizations 

: det(Ml) 
MI = K(Mo), f l  = det(Mo), J2 = 

g ( M l )  det(M2) . K(M2) 
M , =  f~ , f 3 -  --g77-7-~ , M3=-797-~f3 (4.15) 

- J l  J 2  f l  " f _  

det(M3) K(M3) det(M4) 
f 4 -  -777-~ , M4 =--~7-  ~ , f5 7 4 . . . .  

. . , 2 : 3  . . , 2 : 3  f3  "f4 

Let us note that one has more factorizations than in the generic case (4.2). 
Moreover, for arbitrary n, one has the following factorizations, but now 
with a fixed number of polynomials f,,, instead of the "stringlike" factoriza- 
tions (4.3) and (4.4): 

4 7 (4.16) 3 6 det(M,,)=f,+, " f , ' f , - t  K(M.) = M.+, . f . . f , , _ , ,  
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yielding 

K(M,)  M,+~ (4.17) 
I((M,)  = det(M,,) - f ~ - i  "f,, "f,,+ l 

Since the 8 • 8 matrix (4.13) is, after a relabeling of the rows and columns, 
the direct product of  two times the same 4 x 4 matrix, and since the 
homogeneous transformation K acts in the same way on these two blocks, 
all these f,, are exactly pelfect squares. 

It is illuminating to see how factorizations like (4.2)-(4.5) become 
(4.15)-(4.17). One has the same first factorizations up to M_, and f3. They 
first become different with M3, for which one gets an extrafactorization of  
f l .  Obviously, in the factorization off4,  one no longer has a factorization 
off~  [because an extra factorization off~ in all the entries of M3 yields an 
extra factorization off~  8 in det(M3)]. These slight modifications, however, 
have the amazing consequence of changing the "stringlike" factorizations 
(4.3) and (4.5) into factorizations with a f ixed number of  terms [-see rela- 
tions (4.16) and (4.17)]. 

The generating functions c~(x) and/ / (x)  satisfy 

(1 + x) co(x)- 8(1 + x + x ~ ) t ~ ( x ) - 8 = O  (4.18) 

leading to 

~ ( x )  = 
8(1 + 4 x +  7x 2) 8x 

(1- -x)  3 ' /~(x)-  (1 - -x )  3 
(4.19) 

x(1 + x ) ( 4 - x )  3x(1 +2 x )  
,u(x) = (1 --x)  3 ' v(x) (1 - -x)  3 

One notes that ct,, and p,, are both quadratic functions of n: 

% = 8(6n2 + 1), //,, = 4n(n + 1) (4.20) 

One remarks that the two generating functions/~(x) and/~(x) are the same 
as for the general 8 x 8 matrix (see Section 4.1 ), the difference being in the 
~,, or the v,, [or  equivalently in the generating functions c~(x) and v(x)]: the 
cubic growth of the ~,, or the v,, [see relation (4.9)] is replaced by a quad- 
ratic growth [see relation (4.20)]. 

In fact this modification of a "stringlike" factorization into factoriza- 
tions with a f ixed number of terms is not as drastic as it looks at first sight. 
Let us, for instance, define, for an 8 x 8 matrix of the form (4.13), the 
variables fstring and the successive matrices M~ ring from the "stringlike" 
factorization relations (4.3) and (4.5), which are valid for general 8 • 8 
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matrices, and therefore, afortiori, for matrices of the form (4.13). We have 
just seen that  an extra factorization occurs for model  (4.13) (M3,...). It is 
amusing to remark that the variables fT~ ring defined from (4.3) and (4.5) and 
the variables f,, defined from (4.16) actually coincide! This can be proved 
recursively. Let us denote by y,, the multiplicative factor between M,, 
[defined by (4.16)] and M string" M string __ ,  . __ ,, = y, ,-M,, .  One immediately gets, 
from (4.3) and (4.16), the following relations: 

1 ( f ,  "f2"" "f , , -  2) 6 f,, f ,  f 2 "  " fn-3  
= and fstring (4.21) 

Y,, * l f,, - l" Y ~, J ,  Y,, - l 

It is then simple to show recursively that y,, = f ~  "f2"" "f , , -2 and therefore 
- -  string t h a t f , - f , ,  . This means that this stringlike factorization may be seen, to 

some extent, just  as a "propagat ion"  of the extra factorization occurring 
with M3. This explains that  the generating functions #(x), fl(x) are actually 
identical for matrices of the form (4.13) and for general 8 x 8 matrices [see 
(4.7), (4.8), and (4.19)]. 

I f  one relaxes the spin reversal constraint (4.10) {for instance, just 
relaxing the equality between M o i l ,  1] and Mo[8,  8] in (4.13)}, which 
means that, after relabeling, the 8 x 8 matrix can be written as two noniden- 
tical 4 x 4 block matrices, one gets back to the above-detailed "stringlike" 

factorizations of Section 4.1. Of  course, if one relaxes the "charge-conserva- 
tion" constraint  (4.11) [for instance, just make M o [ 1 , 2  ] nonzero in 
(4.13)], one also gets back to the above-detailed "stringlike" factorizations 
of Section 4.1. 

Let us note that  the orbits of K can be shown to yield algebraic 
varieties in C P15 given by the intersection of  quadrics. I1~' 11 

4.2.1. A Nine-Parameter  Three-Dimensional  Generalization 
o f  t h e  B a x t e r  M o d e l .  The visualization of the orbits of K has been 
performed in refs. 8 and 9 for the particular subcase which amounts  to 
imposing, together with (4.10) and (4.11), that the matrix R of (4.13) be 
symmetric: 

R (li~ i~ = R j b  j2"-i3 (4.22) 
JIJ2J3 il ,i2,i3 

In this subcase one clearly gets surfaces and it has been shown that these 
surfaces are algebraic surfaces given by the intersecton of  quadr ics ,  t1'9"31)" 12 

The explicit expressions of these quadrics have been written down in the 

H The occurrence of quadrics is closely related ILS~ to the occurrence of 4 x 4  matrices like 
(4.14) for model  (4.13). 

12 When condi t ions  (4.10) and  (4.11) are relaxed one no longer gets (algebraic)  surfaces, but 
higher-dimensional  varieties. 
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particular subcase of the model defined by (4.10) and (4.11) together with 
( 4 . 2 2 ) .  ( t ' 9 ' 31 )  Condition (4.22) is clearly preserved by the transformation I 
and t~ . t2 . t  3 (the matrix inversion and the matrix transposition). More 
rearkably, condition (4.22) is actually preseroed by the three other inver- 
sions (8'9) of this three-dimensional vertex model, namely 11 = tl .I.t,_ .13, 

12 = 12-I. t~. t3, and 13 = t 3 �9 I .  t I - t 2. This is a consequence of the fact that 
condition (4.22) is preserved by the partial transpositions t,, t2, and t 3. 
With this last condition the three-dimensional vertex model looks even 
more closely like a generalization in three dimensions of the symmetric 
eight-vertex Baxter modeU 9'81 When condition (4.22) is satisfied together 
with conditions (4.10) and (4.11), the two identical block matrices (4.14) 
depend only on ten homogeneous parameters. Using the notations intro- 
duced in ref. 9 or ref. 31, one can introduce ten homogeneous parameters: 

(ik m,:a B3d= h i j~=Idl b I C 3 C 2 

P f e I ~dz c3 b2 c, 
n c b /  \ d  3 c2 Cl b3 

(4.23) 

Of course, the transformation t,, which is the block transposition of the 
two off-diagonal 4 x 4 matrices, and also transformations t: and t 3 become, 
as a consequence of the relabeling, new permutations of the entries of this 
4 • 4 matrix B3d, {31) 

t~: cj,-~dj, ck '- 'dk,  ( i , j , k ) = ( 1 , 2 , 3 )  (4.24) 

Actually, and quite remarkably, there exist four quantities which are 
invariant by all four generating involutions L I~, 12, 13 and therefore the 
whole group F3D they generate. Let us recall the results of ref. 31. 

Let us introduce 

ab~ + b2b 3 - c~ - d~, c2d2 --  c3d3 (4.25) 

and the polynomials obtained by permutations of 1, 2, and 3. They form 
a five-dimensional space of polynomials. Any ratio of the five independent 
polynomials is invariant under all four generating involutions/,  1~, /2, / 3 .  

The parameter space C P  9 is thus foliated by five-dimensional algebraic 
varieties invariant under the whole group F3o: 

Pi(a ..... d3) 
- const (4.26) 

Qi(a ..... d3) 

where Pi and Qi  a r e  chosen among the quadratic polynomials (4.25) and 
the one deduced by permutations of directions 1, 2, and 3. 
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. 7 ~  
-0 78 . 

Fig. 1. Two-dimensional projection of the iteration of the transformation K 2 acting in the 
nine-dimensional parameter space of the three-dimensional vertex model (4.13) corresponding 
to a symmetric 4 • 4 matrix (4.23). 

C o n s i d e r i n g  t h e  s u b g r o u p  o f  F3D g e n e r a t e d  b y  t w o  i n v o l u t i o n s  a m o n g  

t h e s e  fou r ,  o r  e q u i v a l e n t l y  c o n s i d e r i n g  t h e  i t e r a t i o n  o f  K only,~3 o n e  c a n  

s h o w  t h a t  t h e  o r b i t s  o f  th i s  t r a n s f o r m a t i o n  a r e  a l g e b r a i c  s u r f a c e s  g i v e n  b y  

i n t e r s e c t i o n  o f  q u a d r i c s . t  ~'9' 11.,3 

T h e s e  a d d i t i o n a l  q u a d r i c s  h a v e  b e e n  w r i t t e n  exp l i c i t l y  t31)' 14 

a b l - b 2 b 3 - c ~ - d ~ ,  ( a + b l ) c l - d 2 d 3 - c 2 c 3  
(4 .27)  

(b  2 --[- b3) dl  - d2c  3 - d 3 c  2 

t3 Since I commutes with the matrix transposition t I �9 t 2 �9 13, the product of two inversions, for 
instance, I t - I =  t~ - I- t~ - t2 - 1 3  �9 I =  K 2 - t~ - t2 �9 1 3  is equivalent, up to the matrix transposition 
l I " 1 2 " 1 3 ,  t o K  2. 

14One should note a misprint in ref. 31: one should read a b l - b 2 b 3 - c ~ - d  ~ instead of 
ab I - b2b 3 - c 2 + d~. 
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Fig. 1 (continued) 

Figures l a - l c  show clearly that the orbits of K are (algebraic) sur- 
faces. These orbits strongly suggest an interpretation in terms of curves 
winding around a two-dimensional torus in the generic "incommensurate" 
situation. 

In contrast with the situation encountered in Section 3.1 [see relation 
(3.8)], the successive iterates of Mo live in the whole nine-dimensional affine 
matrix space (4.23): 

KZ"(Mo)=a~o"'.Mo+a]"l.M2... +a~"l.M,6+a~9"J.Ml8 (4.28) 

The visualization of the orbits of K has also been performed when one 
relaxes the matrix symmetry condition (4.22). One no longer finds surfaces. 
Figures 2a-2c illustrate such a situation. Figure 2a corresponds to an orbit 
for an initial matrix "almost" symmetric (symmetric up to 10-6). This first 
figure, which corresponds to a very small asymmetry of the initial matrix, 
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�9 . t ; ,  

% 

Fig. 1 (continued) 

may look similar (at least for the first 10 5 iterations) to Figs. la- lc .  In fact, 
one can see in Fig. 2a that the density of points is more "fuzzy" compared 
to Figs. la- lc ,  which suggests a curve moving on a two-dimensional 
torus. The density of points of Figs. 2b and 2c clearly corresponds to the 
projection of points living in algebraic varieties of dimension greater than 
two. 
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:I.L.. �9 I �9 - .  / .  

Fig. 2. Two-dimensional projection of the iteration of the transformation K 2 acting in the 
15-dimensional parameter space of the three-dimensional vertex model (4.13) corresponding 
to an "almost" symmetric 4 x 4 matrix (4.23). 

These results have to be compared  with the one given by K o r e p a n o v  t32) 
or  the one described in Appendix  C. The fact that  a po lynomia l  growth 
occurs when some of the "arrows"  in the vertex models  take two colors  and 
that  exponent ia l  growth (generically) occurs when the number  of colors  of 
the "arrows"  is no longer 2 (see Section 3.2) deserves some comment :  this 
polynomial growth is related to the fact that  the t ransformat ion  K can be 
represented as a shift on a Jacobian variety natural ly  associated with K. We 
previously recalled that  algebraic varieties having an infinite set o f  auto- 
morphisms cannot  be of the so-called general type. ~28~ The fact that  one can 
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F i g .  2 (continued) 

associate with the algebraic surface given by the intersection of quadrics 
(4.27) and (4.25) some Jacobian  variety should help to characterize in 
more detail these surfaces which are not of the general type. 15 

4.2.2. An Integrable Subcase of the Three-Dimensional  
Genera l i za t ion  o f  t he  Bax te r  Mode l ,  In order to shed some light 
on the relations between the polynomial  growth and the occurrence of 
algebraic varieties which are not o f  the so-called "general" type c28~ (Abelian 
varieties, products of elliptic curves,...), let us consider a situation for which 
elliptic curves o~cur. At this point, it is worth recalling that, for particular 
patterns of  the three-dimensional generalization of the Baxter model  
considered in Section4.2.1 [condit ions (4.11), (4.10) together with the 
additional condition (4.22)], the iteration of K (or /~)  can actually yield 

15 Note that the space where this Jacobian variety lives is, in general, not the same as the 
parameter space CPc_ ~ where these algebraic varieties generated by K live. 

8 2 2 / 7 8 / 5 - 6 - 3  
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"~Z~i : - . . , ~  . . . .  ' - ;  "~- 

e Sz.. .  �9 

Fig. 2 (continued 

elliptic curvesJ 8'9) These particular patterns amount to imposing that the 
initial matrix (and therefore the successive matrices M,,) is invariant under 
the permutation of the two directions 1 and 2. In fact we will see in this sec- 
tion that there is no need to impose the matrix symmetry condition (4.22) 
to get integrable subcases of (4.13). 

With the previous order (4.12) for the rows and columns of the 8 x 8 
matrix, these additional conditions read 

R[1, 6] = RI-I, 7],  R[2, 8] = R [ 3 ,  8],  R[2, 5] = R [ 3 ,  5] 

R[4, 6] = R[-4, 7],  RI-2, 2] = R[3, 3],  R[-2, 3] = R[3, 2] 

Recalling matrix (4.13) and its notations, this symmetry between directions 
2 and 3 yields the following additional equalities among the entries: m = l, 
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j =  i, g = d, e = c, f =  b, and p = n. The corresponding 8 x 8 matrix thus 
depends on ten homogeneous parameters: 

l a  0 

0 b 

0 c 

R3 a= q 0 
0 i 

d 0 

d 0 

0 l 

O k O  l l O  1 

c 0 n 0 0 d 

b 0 n 0 0 d 

0 h 0 i i 0 

i O h O O q 

0 n 0 b c 0 

O n  0 c b O 

l 0 k 0 0 a 

(4.29) 

or on the two identical 4 x 4 block matrices (4.14): (Iak 
B3 a= q h i 

d n b 

~d n c 

(4.30) 

This 4 x 4 matrix is invariant under the permutation of directions 2 
and 3, which amounts to permuting the last two rows and columns of the 
two four-dimensional subspaces 

[(-t-1, q,1, q . 1 ) , ( q . 1 , - 1 , - 1 ) , ( - 1 ,  q.1, - 1 ) ,  ( - 1 ,  - 1 ,  q,1)] 

and 

[ ( - 1 ,  - 1 , - - 1 ) , ( - 1 ,  q-l, q-l), q-1,--1,-t-1),(- t-1,  q-l ,--1)-I  

Imposing the additional constraints (4.29), one remarks that the fac- 
torizations (4.16) and (4.17) are slightly, but definitely, modified as follows: 

det(Mj) 
M~ = K(Mo),  f l  = det(Mo), J2 = 

K ( M I )  det(M2) K(M2)  
M 2 -  f 4  , f 3 -  f ~ . f ~  , M3 f ~ . f 4  

det(M3) K(M3) det(M4) 
f4 = r 7  r3.  ,,-5, M4 = f 6  .f~ . f4 ,  f ,  - j -7  .f~ .f4s .... 

d l  " J 2  -~3 

(4.31) 
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and for arbi trary n 

K(M,) M, ,+I . f ,  4 2 6 = . f , ,  , . f , , _ , _ ,  

yielding 

5 3 .f,7_ de t (M. )  = f,, +, " f , , ' f , , - i  z 
(4.32) 

Is = K(M,,) M,,+ ~ (4.33) 
det(M,,) f , - 2 " f , , - t ' f , ' f , , + ,  

Note  that  the "universal" relation (4.5) is actually modified for subcase 
(4.29). The new polynomials,  defined in this restricted (integrable) subcase 
(4.29), can actually be shown to satisfy nonlinear recursion relations. Since 
the f ,  are pelfect squares, one can introduce their square roots f ' ,  =f~/2. 
Remarkably,  these polynomials  f',, satisfy the same hierarchy of  recursion 
relations as for the 16-vertex model (see Section 3.1 and ref. 1): 

f~,(f~,+3)2-f'~+4(f'n+l) 2 f',,_~(fi,+z)2-f'~+3(f'n) 2 
(4.34) D 

f ' . - , f ' . + 3 f ; , + ,  --f;,f;,+ ,f;,+5 f;,-2f;,+2f;,+3 - - f ' . - , f ; , f ; ,+4  

o r  

f'n+,(f;,+4)2 f;,+s--f'n+z(f'n+3)Z fi,+6 
(f;,+ z)Z f;,+ 3f'.+ 7-- f'.f'n+4(f;,+ 5) 2 

f',,+2(f;,+s)2 f;,+6--f'.+3(f'.+4)2 f;,+7 
= , 2 . . . . .  2 (4.35) 

( f , + 3 )  f , ,+4f , ,+s-- f ,+l f , ,+s( f , ,+6)  

These recursion relations are known to yield elliptic curves. I~ 3) The 
generating functions ct(x), fl(x), p(x),  and v(x) read 

~(x) = 8(1 + 5x + 3x 2 + 7x 3) 
(1 + x ) ( 1 - x )  3 

x(5 + 2x 2 - x  3) 
~ ( x )  - 

(1 + x ) ( 1 - x )  3' 

8 x  

f l ( x ) -  (1 + x ) ( 1  - x )  3 (4.36) 

2 x ( 2 + x +  3x 2) 
v(x) - (4.37) 

associated with the 

(1 + x ) ( 1  - x )  3 

The integrability of this subcase (4.29) is thus 
occurrence of one more  singularity [ compare  with (4.7) or (4.19)]. 

In contrast  with the situation we had in Section 3.1 [see relation 
(3.8)], the successive iterates of M 0 belong, for this subcase (4.29), to a 
seven-dimensional affine subspace of the nine-dimensional affine matrix 
space [(4.29) depends on ten homogeneous parameters] 

"~"~ ~'r (4.38) K2"(Mo) = ato ''~. mo  + a] "). M2-- -  + "7 ""-  14 

which is a codimension-two subspace of the space where the matrices Mo 
live. 



Discrete Symmetry Groups of Vertex Models 1229 

The equations of these elliptic curves can be simply written down as the 
intersection of the quadrics and of the hyperplanes preserved by K 2 [see 
(4.29)]. For  the model  (4.23), analyzed in refs. 8 and 9 (see Section 4.2.1), 
which amounts  to imposing the Bol tzmann matrix to be symmetric  [condi-  
tion (4.22)], these quadrics are (4.25) and (4.27), and these hyperplanes 
read, with notat ions (4.23), 

b 2 = b3, c 2 = c3, d 2 = d 3 (4.39) 

4.2.:3. A T h r e e - D i m e n s i o n a l  G e n e r a l i z a t i o n  o f  t h e  S i x - V e r -  
t e x  M o d e l .  Another  example of "restricted factorization" corresponds 
to the vertex model defined in refs. 8, 9, and 31, which can be seen as a 
three-dimensional generalization of the s i x - v e r t e x  m o d e l  (31) The recursion 
relations are a little bit more  involved compared  to the previous examples,  
but still yield polynomial  growth with similar generating functions. 
Detailed calculations are given in Appendix B2. 

5. G E N E R A L I Z A T I O N  TO d - D I M E N S I O N A L  V E R T E X  
M O D E L S  A N D  M O N O D R O M Y  M A T R I C E S  

We consider the matrix (2.3) for an arbi trary m-dimensional  space 
when there are only two spin states in direction 1, that  is, q = 2. 

The transposi t ion tl amounts  to permuting two off-diagonal m x m  

submatrices of this 2m x 2m R-matrix,16 

tl" ( A  DB)._.(B C )  (5.1, 

where A, B, C, and D are m x m matrices. 
Such a formalism can represent many  different situations encountered 

in lattice statistical mechanics for vertex models. Namely,  it can describe 
d-dimensional vertex models as well as m o n o d r o m y  matr ices .  (33) These 
m o n o d r o m y  matrices can be written as (5.1), where the matrices A, B, C, 
and D are now 2Nx 2 N matrices. Let us give a pictoral representat ion of 
the two-site case ( N =  2): 

1~ l 2 
i k 

Jl J2 

~6 This problem exactly corresponds to the one considered by Korepanov. t3-') 

(5.2) 
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For  d-dimensional vertex models, m is equal to 2 d -  1. In this case one 
can also consider transposit ions t2, t3,..., t d _ l ,  t8"9) like the tl associated 
with the d -  1 other directions, and of course one obtains similar results for 
all the t;. 

For  arbi trary m (equal to 2 a -  ~ or not), the analysis of the factoriza- 
tions of the iterations of the t ransformation K yields 

de t (Ml )  K(MI ) 
M, = K(Mo), f l  = det(Mo), f 2 = f 2 (  . . . .  2~, M2-~--F~,,,-g 

J l  J l  

det(M2) K(M2) det(M3) 
f 3 - -  7 f 2 (  . . . .  2 ) '  M 3  f4 . / ' 2 (  . . . .  2) (5.3) f , --2 - f ~  "d2['2m--5' --f4(m--2),/1 "f27 a3  

K(M3) det(M4) 
M 4  - - s  .... 5~.f5 2,,-5, f s = f  .r4( .... 2~ . f~ . f ] l , , -21  . ,  . G  ~ . 2  

and, for arbi trary n, the following "stringlike" factorizations: 

- , n  . f 2 ( 2  . . . .  5) 6 f 2 ( 2 m - - 5 )  . f 6 _  . . .  (5.4) K ( M , ) = M , + , f 2 " - s ' f , ] - i  - ' , , - 2  " f , - 3 " a  ,,-4 5 
�9 f 4 ( m  --  2 )  8 

" f 2 l m - 2 ) ' f 7 - I  J t , - 2  de t (M, )  = f , , + ,  _, ,  " f , , -  3 

[ ' 4 (  . . . .  2) 8 . r  2) ( 5 . 5 )  
" J r 1 - 4  " f  ,,-5 J n - - 6  " " " 

Equations (5.4) and (5.5) yield the following relation independent o f  m: 

Is = K(M,,) Mn+ l 
= )2 (5 .6 )  

det(M,,) ( f , ' f 2 " " f , , - ,  " f , , ' f , ,+ l  

Equat ion (5.6) gives again a generalization of Eq. (4.6) for arbi t rary m: 

2m(1 + x 2) 
(1 + x ) .  or(x) �9 fl(x) - 2m = 0 (5.7) 

l - x  

F rom (5.4) and (5.5) and also from (3.3), which is indeed valid, one gets 

( 1 - x)4 + 2mx( 1 + x 2) 2mx 
ct(x) = 2m (1 + x ) ( l _ x )  4 , fl(x) = (1 _ x ) 3  (5.8) 

x(2m - 4 + 3x - x 2) x [ (2m - 5)(1 + x 2) + 5x + x 3 ] 
U ( x ) =  (1 - x p  ' v ( x ) -  (1 - x p  (1 + x )  

(5.9) 

Let us underline that, for m = 4 ,  one recovers (4.7) and (4.8) taking the 
m = 4  limit of expressions (5.8). One also recovers factorizations (4.3) and 
(4.4) taking the m = 4  limit of factorizations (5.4) and (5.5). 
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5.1. Comments :  P r e - B e t h e  Ansatz  and Gauge T r a n s f o r m a t i o n s  

All the examples of vertex models  given here show that  the number  of 
colors  two, for the ar rows of the vertex models,  plays a special role for the 
occurrence o f  polynomial growth. 

This property is related to the fact that the transformation K can be 
represented as a shift on a Jacobian variety C~/F. Where does this Jacobian  
variety come from? 

Actually,  for all the vertex models  for which the t ransposi t ion  t~ can 
be represented as (5.1) (namely m o n o d r o m y  matrices as in Section 5 or  
d-dimensional  vertex models  with arrows taking two colors,...) one can 
associate (see Appendix  C) an algebraic  curve of equat ion 

de t (Ap '  - C - Dp + pp'B) = 0 (5.10) 

As a byproduct ,  this provides a canonical Jacobian variety for such vertex 
models, namely the Jacobian  variety associated with curve (5.10). This 
procedure,  which associates with an R-matr ix  the algebraic curve (5.10), 
originates from a key "factor izat ion" relat ion closely related to the act ion 
of the bi ra t ional  t ransformat ions  K, namely the "pre-Bethe Ansatz" condi-  
tion. (L~ More  details are given in Appendix  C. 

In fact, it will be shown in for thcoming publ icat ions  that  one can 
prove the po lynomia l  growth of the calculat ions (36) when the t ransforma-  
tion K can be represented as a shift on a Jacobian  variety C"/F. This 
enables us to bet ter  unders tand why the number of  colors two for the arrows 
of the vertex models  plays such a special role for the occurrence of  polyno- 
mial growth. 

Let us also note that  the curve (5.10) has appropr ia t e  invariance 
propert ies  with respect to "gaugelike" t ransformat ions  generalizing the 
weak-graph t ransformations.  ~2~ Taking  into account  the relat ion between 
the t ransformat ion  K and the "pre-Bethe Ansatz"  condi t ion J7 and therefore 
the algebraic  curve (5.10) or its associated Jacobian  variety, it is not  sur- 
prising to see that  these "gaugelike" t ransformat ions  are also symmetries  of 
the t ransformat ion  K, compatible with thefactorizations (5.4) and  (5.5) (see 
Appendix  D). 

J7 The relevance of the "pre-Bethe Ansatz" condition is not clear as far as, for instance, 
calculating the partition function is concerned, but its significance for the discrete sym- 
metries considered here is well established(t~ this is a consequence of the compatibility of 
this condition with the transformation I together with the partial transposition t I or t 2. 
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6. S O M E  C O M M E N T S  ON THE GENERATING FUNCTIONS:  
FROM VERTEX TO SPIN MODELS 

For all the birational transformations described here, one remarks that 
one always has the three following factorization relations: 

r r . r 1 6 2  . . .  F G  det(M,,) = f , + ,  . f t ,  -f,~2 l " f , , - 2  J , , - 4  J ,  �9 f , , - 3  (6.1) 

K ( M , , ) = M , , + ~  . f , , ,o. f , , ,_~ . f ~ 2 _ 2 . f ] ~  3 . f , , 4 _ 4 . . . f ~ . - ,  (6.2) 

K(M, , )  M,,  + l 

~ : ( M " ) - d e t ( M , , ) - f , , + ~ . f ~ , . f , p 2 _ , .  J,,r~ 2 �9 J,,cP . . . .  - 3 f~"  
(6.3) 

Let us introduce a new generating function for the ~,,: 

~(x)= 1 + ~ l x + ~ 2 x  2+~3x 3+ --- (6.4) 

With this new generating function ~(x), relation (6.1) simply reads 

x ~ ( x )  = ~(x). fl(x) (6.5) 

One can also introduce generating functions for the r/,, and p,,: 

q(x )  = tlo + tl, x + rl2x 2 + t l3x 3 + . . .  (6.6) 

p ( x ) =  1 + p j x W p 2 x 2 + p 3 x 3 +  . . .  (6.7) 

One gets from relation (6.3) the following relation between u(x), f l (x) ,  
and p(x): 

N + N p ( x ) .  f l (x )  = ( 1 + x ) .  ~ (x )  (6.8) 

which generalizes Eqs. (5.7) for an arbitrary N x  N matrix. 
Many more relations can be obtained among these various generating 

functions ~(x), f l (x) ,  I t(x) ,  v ( x )  ..... ~1,2~ 
Among these more or less involved generating functions, it appears 

that two generating functions are especially simple, namely f l (x)  and par- 
ticularly p(x) .  Let us give here the explicit expressions of p ( x )  for various 
vertex models considered in this paper. For t~ for 4 x 4, as well as q2x q2, 
matrices (see Sections 3.1 and 3.2) the expression for p ( x )  is 

p ( x )  = 1 + x 2 (6.9) 

while for t~ for 2ax2  a (or 2mx2m)  matrices [see Sections 4 and 5 and 
Eq. (5.7)-1 p ( x )  is given by 

1 + x  2 
(6.10) p ( x ) =  1 - x  
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These two kinds of generalizations of the transformation tl for 
arbitrary size of the matrices are of a quite different nature. In particular, 
the size dependence of the generating functions [in particular, fl(x)] is 
quite different. It is simpler for the generalizations described in Sections 4 
and 5 [compare, for instance, the expression for/~(x) in (5.8) and (3.17)]. 
Note, however, that p(x) is remarkably simple for both kinds of size 
generalizations, since it has zeros or poles only on the unit circle and it is 
actually independent of the matrix size. 

The polynomial, or exponential, growth of the calculations of the 
iterations is made clear for the singularities of the other generating func- 
tions ct(x), fl(x) ..... or even the generating functions q(x) and ((x). This 
provides a condition for the polynomial growth of the calculations, which 
can therefore be checked quickly from relations (6.1), (6.3). 

The polynomial growth of the calculations corresponds to poles on the 
unit circle. In fact in all the examples we have introduced t~-3) one only 
gets Nth roots of unity in the denominators of the rational functions 
ct(x), fl(x) ..... and, most of the time, only x =  +1 singularities. We have 
obtained very few Nth roots of unity different from x = ___ 1. One example 
corresponds to an integrable subcase of a birational transformation 
(denoted class IV in ref. 3), which yields, when restricted to this integrable 
subcase, (2) 

4x 
f l ( x ) -  (1 - x ) ( 1  - x2)(1 - -x  3) (6.11) 

Another interesting example corresponds to a (six-state chh'al) edge 
spin model ~5"6) for which a foliation in terms of elliptic functions exists. ~SJ 
The analysis developed here, or in refs. 1-3 for vertex models, has to be 
slightly modified 112~ when considering edge spin models or IRF models. 
However, it is worth noticing that one gets, for these integrable birational 
mappings, a generating function for the growth of the calculations where 
third and fourth roots of unity occur~14): 

(1 + x + 2x'- + x 3 + 2x4)(1 + 2x  + 2x  2 + 2x 3) 
G(x) = (1 - -  x ) (  1 - -  x 3 ) (  1 - -  x 4)  ( 6 . 1 2 )  

The growth of these coefficients, that is, the growth of the degree of the 
successive iterations, is dominated by the coefficients of the expansion of 

49 
Gd~ 12(1 - x )  3 (6.13) 
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which grows like 49(n + 1)(n + 2)/24. Another example is a five-state Potts 
model (6"371 (symmetric and cyclic 5 x 5 matrices), which yields integrable 
birational mappings (a foliation of CP2 in algebraic elliptic curves). (6) For 
this edge spin model the generating function for the growth of the calcula- 
tions is given by "4)'~8 

(1 + X +  2X2) 2 
Up~ = (1 - -x)  2 (1 - -x  3) (6.14) 

The similarity with expression (6.12) is striking. The growth of these 
coefficients is dominated by the coefficients of the expansion of 

16 Gr, o,s, , (6.15) domtX) 3 ( l - - x )  3 

Another interesting example of a spin model is the q-state standard 
scalar Potts model on a triangular lattice with two- and three-site interac- 
tions, introduced by Baxter et al. (171 (BTA). Because of the three-site inter- 
actions on the up-pointing triangles, this model is not an edge spin model. 
It can also be represented as a vertex model on a triangular lattice. (17) 
It has been shown that the symmetry group generated by the inversion 
relations yields birational representations of hyperbolic Coxeter groups. (381 
Some of the generators of this group have been shown to yield algebraic 
elliptic curves and even rational curves, t38) Let us consider the factoriza- 
tions corresponding to the iteration of one of these generators which yields 
curves. The analysis of the polynomial growth of the degree of these 
iterations is sketched in Appendix E and leads to a quite simple generating 
function: 

1 + 2 x  3 
G B T A ( X ) -  (1 - x )  3 (1 + x )  (6.16) 

This greater complexity of the generating function one encounters with 
edge-spin models comes from the fact that the involution which plays the 
role of the transpositions tl, t2,.., for vertex models is a nonlinear transfor- 
mation (namely the Hadamard inverse 15"6)) which amounts to taking the 
inverse of each entry of the matrix R[i,  j ]  --* 1/R[i, j ] .  One cannot find, as 
simply as for vertex models, "Pliicker-like" variables c1~ of a reasonable 

18The birational transformations corresponding to these two examples of spin-edge 
models (6'371 can be "q-deformed," this deformation preserving the integrability (namely the 
foliation in elliptic curves of the parameter space). I1a'37~ It is worth noticing that these 
q-deformed birational transformations have the same generating functions as (6.12) or 
(6.14). 
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degree that "linearize" the action of the matrix inversion I and of the other 
involution: the algebraic expressions covariant under the action of the 
action of the matrix inversion I and of the Hadamard inverse are of a 
higher degree. ~5"6~ In fact, it is always possible, after Kadanoff and 
Wegner, ~39~ to map a spin-edge model for which the edge Boltzmann 
weight interaction depends on the difference between nearest-neighbor 
spins onto a vertex model. (39~ Introducing the edge Boltzmann weight 
interaction W(a i -  aj) (associated with the horizontal bonds) between two 
neighboring spins a,. and aj, and ff'(ak, a~) another edge Boltzmann weight 
(associated with the vertical bonds between two neighboring spins ak and 
crl), the two bonds [ a i - a j ] [ c r k - a l ]  being dual bonds, one can easily 
associate a vertex Boltzmann weight given by 

Wvert(i, j, k , /)= W(ai--ffj)" /'V(ak -- o't) (6.17) 

with i=cr ; - -ak ,  j = a k - - a j ,  k = a j - a / ,  and l = a / - a ~ ,  and therefore 
i + j + k + l = O .  

This transformation maps the edge-spin model onto a vertex model, 
thus allowing one to introduce linear involutions like t,, t2 ..... However, 
this "linearization" of the problem multiplies by two the degree of all the 
algebraic expressions encountered. 

7. C O N C L U S I O N  

We have used the methods introduced in refs. 1-3 on various examples 
of vertex models of lattice statistical mechanics. In particular, we have 
analyzed the factorization properties of discrete symmetries of the param- 
eter space of these lattice models, represented as birational transformations. 

For all the examples introduced in this paper, which correspond to 
matrices of arbitrary size, it has been shown that remarkable factorization 
relations independent of the matrix size occur [see, for instance, (3.14), 
(5.6)]. 

Different features have eerged from this study, namely the polynomial 
growth of the complexiO~ of the iterations of these birational transforma- 
tions, the existence of recursion relations bearing on the factorized polyno- 
mials f,,, and the existence of deterinantal compatibility conditions like 
(5.10). The relation between these properties and the integrability of these 
lattice models of statistical mechanics, or more general structures like the 
"quasiintegrability, ''11~ has been studied. The analysis of the factorizations 
corresponding to a specific two-dimensional vertex model (the Stroganov 
model; see Sections 3.3 and 3.4) has shown how the generic exponential 
growth of the calculations does reduce to a polynomial growth when 
the model becomes Yang-Baxter integrable. This gives a first example of 
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the fact that the search for polynomial growth of the complexity of the 
associated iterations provides a new way to analyze vertex models. (8"9"311 

It has been shown that the (determinantal) compatibility condition 
associated with the "pre-Bethe Ansatz" (5.10) naturally yields algebraic 
curves of quite high genus together with their associated Jacobian variety: 
one could seek systematically for models (that is, specific patterns of matrix 
Boltzmann weight) for which this genus becomes as small as possible. 
These compatibility conditions yield as many curves (5.10) as the dimen- 
sion d of the lattice (see Remark 1 in Appendix C): one should concentrate 
on the models for which the d algebraic curves (5.10) are, as much as 
possible, on the same footing (same genus,...). 

The examples of birational transformations associated with vertex 
models, detailed here, enable us to clarify the occurrence of polynomial 
growth of the complexity of the iterations: in particular, it has been shown, 
using the examples of three-dimensional vertex models, that a polynomial 
growth not only occurs with algebraic elliptic curves, ~3''2~ but can also 
occur for transformations yielding algebraic swfaces or even higher-dimen- 
sional varieties. In this respect a very general three-dimensional vertex 
model, the 64-state vertex model, emerges as a remarkable model illu- 
strating such a situation (see Section 4). 

In fact, it will be shown in forthcoming publications that one can 
prove the polynomial growth of the calculations 1361 when the transforma- 
tion K can be represented as a shift on a Jacobian variety C"/I'. 

The search for polynomial growth of the complexity of the associated 
iterations could provide a new way to analyze three- or higher-dimensional 
vertex models, ts'9,3~ searching systematically for models where a Jacobian 
variety of an algebraic c u r v e  o c c u r s .  19 

Let us recall that Jacobian varieties of curves are particular Abelian 
varieties depending only on 3 g - 3  moduli among the g (g +  1)/2 param- 
eters 2~ upon which the Abelian varieties depend. 

Conversely, it is not clear whether a polynomial growth necessarily 
implies the existence of an associated Jacobian variety (one can imagine a 
situation where Abelian varieties which are not Jacobian varieties occur 
together with polynomial growth, or K3 surfaces together with polynomial 
growth,...). We will try in further publications to see if this polynomial 
growth is necessarily related to Abelian varieties. We will also try to see to 
what extent the product of elliptic curves is a situation favored in lattice 
statistical mechanics. 

19 Particular attention may be devoted to the subcase of hyperelliptic curves: the (analytical) 
(3g-3)-dimensional space of moduli (Teichmfiller space) has singularities corresponding to 
the hyperelliptic curves which only depend on 2g-  1 moduli. 

2o The period matrix of the theta functions of g variables has to be symmetric. 
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A P P E N D I X  A. P O L Y N O M I A L S  A S S O C I A T E D  W I T H  
S T R O G A N O V ' S  M O D E L  

T h e  X,n,,  Y .  a n d  Z,,  d e f i n e d  in  S e c t i o n  3.4 r e a d ,  u p  t o  n = 5, 

X ~ = b - 1 ,  Y ~ = 2 b +  1, Z ~ = b + l  

X ~  = 2 b  z - b - 1 + b c  + c, Y2 = 4b2 - 2b  - 2 - b c  - c 

Z z = 2 b  2 - b -  1 - b c - c  

H X 3 - 4b  3 + 2 b Z c  - 6 b  2 - b e  z - b c  + 2 - c 2 - c 

II3 = 4 - 3 b e  - 12b 2 + 8b - 2c  + 2 b 3 c  + 3 b 2 c  - b 2 c  2 

- 3 b e  2 - 2 c  2 +  16b 4 -  16b 3 

Z 3 = 2 - b c  - 6 b  z + 4 b  - c + 2 6 2 c  - b c  2 - c 2 + 8b 4 - 8b 3 

X t ~  = 1 6 b  5 - 32b  4 + 16b4c + 4b  3 - 12b3c - 1 8 b 2 c  + 2 0 b  2 

- b %  3 + b 2 c  2 - 3 b e  3 - b e  2 - 4 b  + 8 b e  - 4 + 6c  - 2c  3 

]I4 = 16 - 3 4 b c  - 96b  2 + 32b  - 16c + 106b3c  + 6 2 b 2 c  + 2 0 b 2 c  2 - 2 7 b c  2 

- 12c 2 + 2 7 2 b  4 - 128b  3 + 8c 3 + 96b  5 - 3 2 0 b  6 - 110b4c  + 5 7 b 3 c  z 

+ 19be  3 + 72b6c  - 32b5c  2 - 80b5c  - 8b4c  3 _ 6b4c  2 

- 19b3c 3 + 2b3c  4 + 862c  4 -k- 10be  4 q- 4c  4 q- 128b  7 

Z 4  = 8 - 1 6 b e -  4 8 b  z + 16b - 8c + 48b3c  + 3 2 b 2 c  + l O b 2 c  2 - 1 4 b e  2 + 136b  4 

- 64b  3 + 4c  3 + 4 8 b  5 - 160b  6 - 5 6 b %  + 30b3c  2 + 9 b e  3 + 32b6c  - 1 6 b 5 c  z 

- -  3 2 b 5 c  - 4b4c  3 - 4b4c  2 - 9b3c  3 + b 3 c  4 -}- 4b2c  4 q- 5 b e  4 -b 2c  4 q- 64b  7 

X t ~  = 4 8 b c -  16 + 128b2 + 1 0 b c  5 -  16b + 32c  + 8 b %  5 -  4 0 b 5 c  3 

_ 5 b 4 c  4 q.- 192b7c  + 32b6c  2 + 4c  5 + 128b  8 - 1 6 0 b 3 c -  1 9 2 b 2 c  2 + 1 6 b Z c  z 

- 1 6 b c  2 - 4 c  2 - 4 0 0 b  4 + 32b  3 - 2 0 c  3 -t- 176b  5 + 4 1 6 b  6 + 4 8 0 b 4 c  

+ 56b3c  2 + 39b2c  3 _ 3 8 b c  3 - 4 4 8 b 6 c -  4 0 b 5 c  2 + 4 8 b 5 c  

- 17b4c3 -7 44b4c2  + 76b3c3 - 12b3c4 + b2c4  + 12bc4 + 4c4 - 4 4 8 b 7  

Y5 = - 1 3 7 c 6 b Z -  1 3 0 c 6 b -  3 2 c 6 +  2 4 5 7 6 b 1 ~  128 + 1 0 3 2 b c  + 1 1 5 2 b  2 

+ 3 5 0 b c  s - 3 8 4 b  + 3 2 0 c  + 2 0 0 b 2 c  5 - 562b3c  5 + 1662b5c  4 - 6 8 8 6 b 5 c  3 

- 7 9 4 b 4 c  4 -t- 3 2 4 4 8 b 8 c  - 2 6 4 2 4 b 7 c  - 782b6c  3 - 6 9 6 b 4 c  5 

+ 5 9 6 8 b 7 c  2 + 1888b6c  2 + 9 6 c  5 + 5 1 2 0 b  9 -  3 4 5 6 0 b  8 - 7 3 6 8 b 3 c  
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- 2 0 9 6 b 2 c  + 3 5 2 b 2 c  2 _ 3 6 8 b c  2 - 9 6 c  2 _ 5 7 6 0 b  4 + 3 2 0 0 b  3 - 2 7 2 c  3 

- 1 0 3 6 8 b  5 + 1 8 8 1 6 b  6 + 7 7 7 6 b 4 c  + 2 2 2 4 b 3 c  2 + 6 0 2 b 2 c  3 _ 9 2 6 b c  3 

- 2 0 7 8 4 b 6 c -  5 4 5 6 b 5 c  2 + 2 1 0 4 8 b 5 c  + 28b4c  3 _ 7 0 4 b 4 c  2 + 4 0 8 4 b 3 c  3 

_ 154663c  4 + 27b2c  4 + 4 9 0 b c  4 + 128c  4 + 1 2 6 7 2 b  7 + 7 7 4 4 b 9 c  

-t- 5 2 0 0 b 7 c  3 _ 19968b lOc  + 4 8 8 b 8 c  3 _ 3 1 0 4 b 8 c  2 + 9 5 9 b 6 c  4 4- 8 2 b 5 c  5 

q- 44b3c  6 -1- 6 2 7 2 b l l c  + 1152b1~ --  1856b9c  2 - 3 1 2 b 8 c  4 

- 1 8 4 3 2 b  11 - 16c 7 + 4 0 9 6 b  12 - 6 1 4 b 7 c  4 - 1536b9c  3 

+ 130b7c  5 + 4 0 0 b 6 c  5 + 15b6c 6 + 86b5c  6 + 154b4c  6 

_ 4 b 5 c  7 _ 28b4c  7 _ 76b3c  7 _ lOOb2c 7 - 6 4 b c  7 

Z 5 = - 6 6 c 6 b  2 - 64c6b  - 16c 6 + 1 2 2 8 8 b  1~ - 64  + 5 1 2 b c  + 5 7 6 b  2 + 1 7 6 b c  5 

- 192b  + 160c  + 1 0 2 b 2 c  5 - 3 8 8 b 6 c  3 - 352b4c  5 - 2 8 2 b 3 c  5 + 8 1 7 b 5 c  4 

- 3 4 5 6 b 5 c  3 - 3 6 1 b 4 c  4 + 1 6 1 2 8 b 8 c  - 1 2 8 6 4 b 7 c  + 2 6 8 8 b 7 c  2 + 1056b6c  2 

+ 4 8 c  5 + 2 5 6 0 b  9 - 1 7 2 8 0 b  8 - 14b4c 7 _ 3863c  7 - 50b2c  7 - 3 2 b c  7 

- 3 6 4 8 b 3 c -  1 0 5 6 b 2 c  + 192b2c  2 -  176bc  2 - 4 8 c  2 - 2 8 8 0 b 4  + 1 6 0 0 b  3 

- 136c  3 - 5 1 8 4 b  5 + 9 4 0 8 b  6 + 3 9 3 6 b 4 c  + 1056b3c  z + 3 0 0 b 2 c  3 

- 4 6 4 b c  3 - 1 0 4 6 4 b 6 c  - 2 5 4 4 b 5 c  2 + 1 0 3 6 8 b 5 c  + 16b4c 3 - 4 3 2 b 4 c  2 

+ 2 0 4 8 b 3 c  3 - 759b3c  4 + 2 6 2 c  4 + 2 4 0 b c  4 + 64c  4 + 6 3 3 6 b  7 + 3 5 8 4 b 9 c  

+ 2 6 0 8 b 7 c  3 - 9728b lOc  + 2 4 0 6 8 c  3 - 1536b8c  2 + 4 4 3 b 6 c  4 + 4 0 b 5 c  5 

+ 23b3c  6 + 3 0 7 2 b ' 1 c  + 5 1 2 h i ~  _ 7 6 8 b 9 c  2 - 144b8c  4 - 9 2 1 6 b  ~ 

_ 8c 7 + 2 0 4 8 b  12 - 302b7c  4 - 7 6 8 b 9 c  3 4- 66b7c  5 

-t- 2 0 2 b 6 c  5 + 7b6c  6 4- 4 1 b 5 c  6 + 75b4c  6 _ 2b5c  7 

APPENDIX  B 

B1. Restricted Factorizations in Dimension Three: 
Product of Elliptic Curves 

Similar to what is done in Section 3.3, one can consider the "restricted 
factorization problem" corresponding to the following initial matrix: 
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where the 4 x 4 submatrices A, B, C, and D are of the form 

where A~, A o, and A 3 are 2 x 2 matrices and 0 denotes the 2 x 2 matrix 
with zero entries, and the form for matrices B, C, and D is similar to (B.2). 
It is straightforward to see that a form like (B.1), together with (B.2), is 
actually compatible with the action of the group generated by the matrix 
inverse ~f and t~/7.81 

For such matrices (B.I) and (B.2) one can see (permuting rows and 
columns 3-4 and 5-6 of the 8 x 8 matrix R3D) that the polynomials f,, 
defined by Eqs. (4.2) factorize into the product of two polynomials. One 
can show that these two polynomials F~ 1) and F} 3) actually correspond to 
the action the birational transformation K associated with two 16-vertex 
models (see Section 3.1) associated with the following two 4 x 4 matrices: 

(A~ B~) and M ( 3 ) _ { A 3  B3) (B.3) 
Mr~ C1 Dt 0 - \ C  3 D3 

One gets therefore for the f,, 

f ,  = Ft, 1 ). FI, 3) (B.4) 

where each of the F}, l) and FI,, 31 satisfy independently the same recursion 
relation, which is actually the recurrence occurring for the 16-vertex model 
(see Section 3.1). This nonlinear recursion relation has been shown to yield 
algebraic elliptic curves g.(l 3) It is thus clear, at least in subcase (B.2), that 
the f ,  do not satisfy a recursion relation [like (3.12)], but that the orbits 
of the iteration of K are naturally associated with algebraic surfaces which 
are the product of  two algebraic elliptic curves: 5" = g x g. 

From Eq. (B,4), one easily gets in this subcase [(B.1), (B.2)] that the 
degrees of the f,, and det(M,,), namely fl,, and a,,, can be written as sums 
of two terms: 

fln=fl~l), o l 3 )  ~ ( l ) - -  ~ [ 3 )  " ] - P n  , ~ n ~ u ~ n  "r~z n (a.5) 

where the B Ci) (resp. the (o ,_,, a,, ) are the degrees of the F,C: ~ [resp. the 
det(M,,)/;)] with i=  1, 3. 

From Section 3.1 [see Eqs. (3.7)], one immediately gets that fllL~= 
fl(31=2n(n+ 1) and 1~)_ 13)_4(2n2+ 1). This provides an example of a n 0~ n - -  ~ n - -  

quadratic growth associated with an algebraic surface (namely: 5" = r x o~). 
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B2. A Three-Dimensional  Generalization of the 
Six-Vertex Model  

Another example of "restricted factorization" corresponds to the ver- 
tex model defined in refs. 8, 9, and 31, which can be seen as a three-dimen- 
sional generalization of the six-vertex m o d e l  t31) It corresponds to the 
K-compatible conditions (4.1) together with the additional conditions 

R+~+t+ ,i ,12i3 = 0  if (it,i2, i 3 )# (+ l ,  +1, +1)  

and 

R_l : t _  =0 if ( i j , i , , i 3 ) v~ ( - l ,  -1 ,  - 1 )  

and 

R+l '+ l '+ '=0  if (jl,j2,j3)~(+l, +1, +1)  (B.6) Jl J2 J3 

and 

- - I ,  1,--1 
RjIj2j3 = 0  if  ( . / 1 , . / 2 , j 3 ) : / = ( - - 1 , - - 1 , - - 1 )  

This particular form for the 8 x 8 matrix (B.6) is not stable by the trans- 
formation K [basically because the transposition tl does not preserve the 
form (B.6)], but it is preserved under the action of K2.  (31)'21 Taking into 
account the simplicity of this model, one can relax the matrix symmetry 
condition (4.22). This gives [with notations (4.13)] the following 8 x 8  
matrix: 

R 3d = 

/a 0 0 0 0 0 0 0  t 

O b c O n O 0 0 

O e f O p O 0 0  
0 0 0  h 0 i j  0 

0 j i 0 h 0 0 0  

O 0 0  p O  f e O  
0 0 0  n 0 c b 0 

0 0 0 0 0 0 0 a 

(R7) 

or, recalling the relabeling previously introduced {(1, 2, 3, 4, 5, 6, 7, 8) 
(1,4,6,7,8,5,3,2)= [ (+1 ,  +1, +1), (+  1,-1,-1), (-1, + 1,-1), (-1,-1, +1 ) ]  

2~ This situation generalizes the one encountered in two dimensions with six-vertex models. 
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and [ ( - 1 , - 1 , - 1 ) ,  ( - 1 ,  + 1 ,  +1 ) ,  ( + 1 , - 1 ,  + I ) ,  ( + i ,  + 1 , - 1 ) ] } ,  we 
can write the two identical  4 x 4 matrices (4.14) 

B3a= h i (B.8) 
P f  
n c 

This model  depends on ten homogeneous parameters. F o r  this three-dimen- 
sional general izat ion of the six-vertex model  (9'31) one can introduce the 
same f,, as the ones given in Section 4.2. The cor responding  matrices can be 
seen to be products  of 3 x 3 and 1 x 1 matrices.  One s t ra ightforward conse- 
quence is that  all the de terminants  one calculates are perfect squares which 
factorize into de terminants  of  3 x 3 matrices and terms cor responding  to 
the 1 x 1 blocks. This enables us to in t roduce variables which are the deter- 
minants  of these 3 • 3 matrices,  which will be denoted  g,, in the following, 
instead of the variables jr,, related to the de terminant  of the whole 8 x 8 
matrix. In t roducing  two variables Wo and w~ related to two par t icular  
entries of the matr ix  Mo and its t ransform by K, one gets factorizat ions 

(det(Mo))  1/2 K(Mo)  
Wo= (Mo) l t ,  g L - -  , M l  = 

Wo g l  wo 

(MI)44  
Wl -- - - ,  g2 = 

W0 

(det(M,))~/2 K ( M I  ) 

w3w, ' M 2 - g 2 w ~ w  I 

(det(M2)) I/2 

g 3 -  WoW~ g~ ' 
K(M2) 

M 3 -  WoW~ g~ g3 

(det(M3))  1/2 

g4  = )t:3)1,1 g 3  ' 
K(M3) 

M4 wSowl gS g4,"" 

(B.9) 

and, for a rb i t ra ry  17, 

K ( M . )  = M,, + , .  w o . w~ . g,]-1" g,, +, 

K(M;,)  = M .  +1" W05" Wl " g,5,_ ," g .  +, 

for n even 
(B.10) 

for n odd 

together  with 

(de t (M, ) )  1/2 = g , +  1 �9 w 0 - w~ . g,,_3, 

( de t (M, ) )  '/2 = g,,+ l" w3" wl �9 g3-1 

for n even 
(B.11) 

for n odd 

822/78/5-6-4 
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yielding for n >~ 2 

K(M.) M.+,  (n.12) 
/~(M,,) = det(M.) - g . _  l" g.+ l" Wo .w, 

Similarly, one can introduce the degrees of the determinants of these 
matrices M ,  and the degrees of the successive polynomials g,,Anamely c~,, 
and fl,, and their corresponding generating functions a(x) and fl(x). These 
generating functions read 

x(3 - 2x) ~ ( x ) -  8(1 + x + x 2 - x 3 )  fi(x) (B.13) 
( l + x ) ( 1 - x )  3 ' ( l - x )  s 

The exponents a, and fi,, read 

G = 4 n 2 + 1 6 n + 6 + 2 ( _ l )  -, fi, - n2 + 5n 
2 

(B.14) 

Again, one can study the "right action" of K on matrices M,, 
[Eqs. (3.3)]. However, since the form of mtrix (B.7) is only preserved by 
K 2, the right action is a little bit more involved, namely 

3 23 6 5 9 53 84 11 2(g|)K2=g3g2gl W o W  1 , 8(gz)K2=g4g2gl W 0 W 1 
(B.15) 

64(g3)K2= 17 90 144..18 gsg2 gl Wo 14:1 " ' "  

and for arbitrary n 

.11) _(21 .13) _14) .(51 
2"" (g,,)K2=g,,+2g?" g~" w~. w]" 

where the z~ o are quadratic integers: 

(B.16) 

z l JJ_n(n+l )  7(2)=n2 + 3 n _  1, z(3)_ (7n + 39)n 
" - 2 ' - "  " 2 

_~4)= 6n(n + 5) ' .~5) (n + 9)n 
"" -" 2 

The factorization scheme (B.10), (B.11) is not modified when the 
matrix symmetry condition (4.22) hold. In contrast, if one relaxes the spin 
reversal condition (4.10) (20 homogeneous parameters), the factorization 
scheme (B.10) is reminiscent of the "stringlike" factorizations (4.3). 

A more detailed analysis, with particular emphasis on the "pre-Bethe- 
ansatz" conditions [see ref. 10 and (C.2) in the following], of this three- 
dimensional generalization of the six-vertex model has been performed in 
ref. 31. 



Discrete Symmetry Groups of Vertex Models 1243 

A P P E N D I X  C. P R E - B E T H E A N S A T Z  

Let us given here miscellaneous remarks explaining the occurrence 
of algebraic curves like (5.10) in the analyzis of vertex models. For this 
purpose let us first recall the relevance of a key "factorization" relation 
compatible with the action of the birational transformations K, namely the 
pre-Bethe-Ansatz condition, tl~ Let us first recall the results of ref. 10 on the 
16-vertex model (which corresponds to m = 2  in the previous section). 
The weak-graph duality 12~ symmetries correspond to a "gauge group" 
G=sl2  x sl2 which acts linearly on R by similarity transformtions (see 
ref. 20 for details): 

if g = g l x g 2 ,  g ( R ) = g l l g ~ l . R . g l g 2  (C.1) 

Let us denote by ~ the group of birational transformations generated 
by / ,  tl, and t2. The actions of G and ~ do not commute. However, G and 
I do commute, and tl (resp. t2) sends orbits of G onto orbits of G. A group 
larger than the gauge group G has naturally emerged in the analysis of the 
symmetries of the 16-vertex model, a group we have denoted GBethe. I10) 

Actually one of the keys to the Bethe Ansatz is the existence [see Eqs. 
(B.10), (B.11a) in ref. 401 of vectors which are pure tensor products (of the 
form v | w) and which R maps onto the pure tensor product v'@ w' (see 
also refs. 10, 34, and 35). If 

v=  ( lp) ,  w=  (lq), v '=  ( ; , ) ,  w' = ( ; , )  

then the solution of the "pre-Bethe-Ansatz" equation tl~ 

R ( v |  w) = ~v' | w' (C.2) 

satisfies the two biquadratic relations tl~ 

14 + III  P -- 112P' + 12 p 2 + ll p,2 _ (l 9 + 118)  p p ,  _ lls p2p, 

+ llopp,2 + 13 p2p,2 = 0 (C.3) 

17 + 1 1 6 q  - -  115q' + lsq 2 + 15r 2 - -  (19 - -  118) qq' - 1 1 7 q 2 q  ' 

114qq '2 + 16q2q '2 = 0 (C.4) 

These two biquadratics are elliptic curves. Remarkably, when calculating 
the modular invariant ~1~ of these curves, one can actually see that these two 
curves actually reduce to the same Weierstrass canonical form ~1~ 

y2 = 4x 3 _ g 2 x -  gs (C.5) 
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A group GBeth e "~ sl 2 x S12 X sl,_ naturally acts on (C.2): the four copies of SI 2 
act respectively on v, w, v', w'. This induces a linear action on R: 

R ~ g i l  l 'g2-L 1 �9 R "glR "gzR (C.6) 

The infinite-order t ransformations K and K,,_ can both be represented as a 
shif t  of the (spectral) parameter  t~~ enabling one to move along these 
various elliptic curves: the two biquadratics (C.3) and (C.4) and the elliptic 
curves generated by t ransformations K and K,,_ in CP~5. This situation can 
straightfowardly be generalized to 2m x 2m matrices [see the transposit ion 
tl defined by (5.1) in Section 5], but now directions 1 and 2 are no longer 
on the same footing: vectors w and w' have m coordinates instead of two. 
Their elimination still yields a reltion similar to (C.3) but now of a higher 
degree. The linear action (C.6) is changed into 

R ~ g~L l - R .  g2R (C.7) 

Let us represent g2R and g[L 1 as 2m • 2m matrices, namely 

(G~R 0 )  a n d  g2Lt=(Go-L' 01) (C.8) 
gzR = G,_R G~L 

where GzR and G2L are two m • m matrices. 
Using notat ions (5.1) for the Bol tzmann weight matrix, one can easily 

see that this elimination yields the fo l lowing  determinantal  relation between 
p and p': 

det(Ap'  - C -  Dp + pp 'B )  = 0 (C.9) 

This determinant  is a polynomial  of degree m in each variable p and p'.  It 
is important  to note that this determinant  is covariant  under the 
"gaugelike" transformtions (C.8): 

det(Ap'  - C - Dp + pp 'B )  

- - * d e t ( G 2 R ) 2 . d e t ( G z L ) - 2 . d e t ( A p ' - C - D p +  pp 'B)  (C.10) 

The compatibil i ty condition (5.10) is therefore invariant under the 
"gaugelike" t ransformations (C.7). 

We have performed an analysis for the m = 4 case (more precisely, for 
an 8 x 8 Bol tzmann matrix corresponding to a three-dimensional vertex 
model),  getting biquartic relations/3~1 Generally, for 2m x 2m matrices, one 
gets relations of degree m both in p and p'. Curve (C.9), except for the 
remarkable  m = 2 case (the 16-vertex model!),  for which the curve identifies 
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with its Jacobian, is a curve  of  genus  g rea te r  than  one. Gener i ca l ly  it is a 

curve  of  genus  22 

g = (2m --  2) (2m --  1 )/2 -- 2(m -- 1 )m/2 = (m -- 1 )2 

and K o r e p a n o v  1321 and  K r i c h e v e r  1351 have  c la imed  tha t  the g r o u p  of  bira-  

t ional  t r ans fo rma t ions  we s tudy  can  actual ly  be represen ted  as a shift on  
the J a c o b i a n  var ie ty  asso ia ted  with curve  (5.10). The  t r a n s f o r m a t i o n  K 

lhTearizes on the Jacobian variety: the  t r a n s f o r m a t i o n  K co r r e sponds  to a 

cons t an t  shift on  the torus.  The  t r a n s f o r m a t i o n  K a m o u n t s  to add ing  a 

fixed e l emen t  of  the Albanese  var ie ty  Cg/F. 

R e m a r k  1. The  analysis  of  2 m x 2 m  mat r ices  can  be seen as a 
p re l iminary  s tudy for the 2 d • 2 d mat r ices  c o r r e s p o n d i n g  to d -d imens iona l  

p rob lems  (see Sec t ion  4). O n e  can s imilar ly  wri te  d o w n  a d -d imens iona l  

"p re -Be the  Ansa tz"  c o n d i t i o n  t~~ 

R ( v ,  | v ,  | . . .  | c,1) = Uv'~ | v', | . . .  | v'~ (C.11) 

The  e l imina t ion  of  2 ( d - 1 )  vec tors  (for instance,  v~_...va and  v~-.-v~,) 
yields d a lgebra ic  curves  like (5.10). A m o n g  the va r ious  d -d imens iona l  

R-matr ices ,  the ones  for which the genus of  the p rev ious  d a lgebra ic  curves  
are all equal and smal le r  t han  ( m - 1 ) 2 =  (2 a - l -  1) 2 are  of  pa r t i cu la r  

interest.  

R e m a r k  2. F u r t h e r  G e n e r a l i z a t i o n s .  The  "p re -Be the -Ansa t z "  

cond i t i on  (C.2) can  be genera l ized  to ( n . m ) x ( n . m )  matrices.  Aga in  
vectors  w and  w' have  m coo rd ina t e s  ins tead of  two,  bu t  n o w  the vectors  

v and  v' have  n c o m p o n e n t s .  Let  us jus t  wri te  here  the n = 3 case. Let  us 
deno te  the c o m p o n e n t s  of  vec tors  v and v' and  the (3m) x (3m) B o l t z m a n n  

mat r ix  in terms of  m x m mat r ices  A t ..... A 9 as fol lows:  

11) (AIA2A3) v=  Pl v '= P'l , fR  = A4 A5 A6 

P2 \ P ' 2 /  A7 /18 A9 

22 A formula for getting the genus is, for example, Noether's formula obtained assuming that 
the curve of degree d has only ordinary multiple points. Since we have only n-uple points, 
this yields g = ( d -  1 ) (d-  2)/2 - Nn(n -- 1 )/2, where N is the number of n-uple points. 143~5~ 
We have here two n-uple points. To see this one can, for instance, write curve (5.10) in a 
homogeneous way, as the intersection of equations det(Ap'--Ct--Dp+ t'B)=0 and 
pp' = it'. 
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The elimination of vectors w and w' yields two determinantal conditions 
(instead of one for n = 2 and, generally, n = 1 conditions for arbitrary n): 

d e t ( ( A ~ + A 2 p x + A 3 p 2 ) . p ' z - ( A T + A s p t + A g p 2 ) ) = O  (C.12) 

d e t ( ( A ~ + A 2 p l + A 3 p z ) . p ' l - ( A 4 + A s p l + A 6 p 2 ) ) = O  (C.13) 

Curve (5.10) is thus replaced, for n = 3, by an algebraic sulfate given by the 
two conditions (C.12) and (C.13), and, for arbitrary n, by an ( n - 1 ) -  
dimensional algebraic variety given by n -  1 "determinantal conditions" 
bearing on 2 ( n - 1 )  variables Pi ..... P,,-1 and p] ..... P ' , -1 .  

This simple remark enables us to understand better why the number of  
colors two, for the arrows of the vertex models, plays such a special role for 
the occurrence of  polynomial growth. 

APPENDIX  D. GAUGE T R A N S F O R M A T I O N S  

The two transformations gzR and g 2 L  1 a r e  actually symmetries of the 
transformation K corresponding to the transposition tl defined by (5.1). 
With notations (7.24) one easily gets 

K(g~L 1 - M  "g2R) = det(g2R)- det (g2L)-1,  g ~ .  K(M) .  g2L (D. 1) 

2 --1 K (gzL "M'g2R)=(det(g2R) 'det(g2L)-I)  2~ .... l~.g~Ll .K2(M).g2R (D.2) 

and for arbitrary n 

K2"(gzL ~ �9 M .  g2R) = (det(g2R)- det(g2L) - l )_-.,,,. g~Ll. K2,,(M) "gzR 

= (det(G2R) �9 det(G2L)- 1)2~2,. g~-Ll. K2 , (M) .  g2R 

(D.3) 

K2, + i(g2-al. M .  g2R) = (det(g2R). det(g2L) - -  1 )z~ +1.  g 2 R  1 . K 2n + I ( M ) .  g 2 L  

= (det(G2R) �9 det(G2L) - 1)2~,~+,. g2-Rl . K2, + l (M) .  g2L 

(D.4) 

with 

(2m -- 1 )2,, _ I (2m -- 1 )2, + l + 1 
z2, , -  , z2,,+ l -- (D.5) 

2m 2m 

For  the inhomogeneous t ransformat ions/~  one also gets 

/~2"(g_;-L'- M .  g2R) = gz-z' ' /s  ' gzR 

R2, ,+,(_c~ -~ R2,,+ g_L " M" g2R)= gzR " I ( M ) ' g 2 L  
(D.6) 
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This is a simple consequence of the relations corresponding to the two 
transformations I and t l: 

I(g2-c I . M .  g2n)  = det(g2n) �9 det(g2L) - l . g2nl . I ( M )  . g2L 

= det(G2n) 2- det(G2L)-2, g 2 1  . I ( M ) .  g2L 

and 

t l(g2-c I . M .  g2n)  = g2L l " t ~ ( M )  . g2n (D.7) 

If one imposes det(G2R)=det(G2L), one gets an invariance under the 
homogeneous transformations K 2", but in fact one has, in general, a 
covar iance  property which is ac tua l l y  a s y m m e t r y  closely linked to the 
homogeneity of the problem. (1'2) The f# and det(M,,) transform very simply 
under (C.7): 

f,, --* (det(g2n)" det(g2L)- 1)~,/2,, .f,, 

= (det(g2n). det(g2L) - l ),,~,,+ 1)/2f ,  (D.8) 

det(M,)  ~ (det(g2n)- det(g2L)- L)~,/2,,. det(M,,) (D.9) 

In the m = 2 case (16-vertex model; see Section 3.1) the f ,  satisfy recursion 
relations like (3.12), yielding elliptic curves. These relations are actually 
invar iant  under symmetry (D.8) (see, for instance, refs. 1 and 2). One notes 
from (D.6) that the i n h o m o g e n e o u s  variables  x , , = l , , . l , , + ~ ,  the product of 
two consecutive l~ [ l , ,=det( /( '"(Mo))]  [and therefore recursions (3.12)] 
are ac tua l l y  invar iant  under  (C.7): variables x,, actually "gauge-away" this 
quite large symmetry group (C.7). When considering the iterations of K 2 or 
/~2, one can, without any loss of generality, "gauge-away" the parameters 
corresponding to these (linear) transformations (C.8): one has two times 
m 2 -  1 inhomogeneous parameters corresponding to G2L and G2n. 

A P P E N D I X  E. S O M E  G E N E R A T I N G  F U N C T I O N S  FOR 
SPIN M O D E L S  

Let us sketch here the analysis of the growth of the complexity of the 
iterations for the two- and three-site interaction q-state standard scalar 
Potts model on the triangular lattice, t~7'3s'46~ One can introduce a q x q 
matrix Boltzmann weight for this model, t3s'461 One inversion relation, the 
transformation 1,,, is the (homogeneous) matrix inversion, while other sym- 
metries, playing the role of transformations t~ in this paper, are permuta- 
tions of the entries of this q x q Boltzmann matrix, c38~ Let us consider an 
infinite-order (homogeneous) birational transformation, which we denote 
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K, obtained from Ih and one of these permutations (this transformation is 
the transformation Pl2I/, in ref. 38). Similar to the situation encountered 
with the three-dimensional generalization of the six-vertex model (see 
Section 4.2.3), the determinant is replaced by two of its factors, which we 
denote P~ and P2. One has the following factorizations: 

K(M,,+ 4) = c,,c.+ , d,,+ , .  M,,+ 5 (E.1) 

where the c. and d. are (homogeneous) factorizing polynomials, and 

P l ( M , , ) = c , c , _  3d, ,_  3 ( E . 2 )  

P z ( M , , )  = c, ,_ ~ c, ,_ 3 c~_  4d, d,,_ 3 (E.3) 

where P~ and Pz are polynomials, respectively of degree 1 and 2 in the 
entries of the matrix M,.  These two polynomials are in fact the two prime 
factors of the determinant of the matrix M,.  

Introducing polynomials f,, such that (E.1) reads 

K(M. )=  f . .  M.+ , (E.4) 

that is, f . + 4 = c . c . + l d . + l ,  we have that the product of PI(M.)  and 
P2(M,,) reads 

PI(M,,) P~_(M,,)= .f ,,2 . f,,+ 3 (E.5) 

Introducing ~,,, the degree of the entries 23 of the M,,, and /3., the 
degree of the f .  one gets from (E.4) and (E.5): 

2a,, =/3,, + ~,,+ l (E.6) 

3~,, = 2/~,, +/3,,+ 3 (E.7) 

The elimination of the fl,, yields the recursion relation 

~,, + 4 -  20~,, + 3 + 20~,, + i -  ~,, = 0 ( E . 8 )  

or equivalently for the corresponding generating function c<(x), the relation 

o ~ ( x ) . ( 1 - 2 x + 2 x 3 - x 4 ) = ~ ( x ) . ( 1 - x ) 3 . ( l + x ) = P ( x )  (E.9) 

where P(x) is a polynomial of degree 3. The first coefficients of c~(x) read 

~(x)= 1 + 2 x + 4 x  2+ 8x 3 + --. (E.10) 

,.3 Instead of the degree of the determinant of the M,  in most of this paper. 
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From these first coefficients one gets the expression for P(x): 

P(x) = 1 + 2x 3 (E.11 ) 

Relations (E.II) and (E.9) yield exact expressions for the generating func- 
tion ~ ( x ) =  GBTA(X) [see (6.16)]. 
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