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We analyze discrete symmetry groups of vertex models in lattice statistical
mechanics represented as groups of birational transformations. They can be seen
as generated by involutions corresponding respectively to two kinds of transfor-
mations on ¢ x ¢ matrices: the inversion of the ¢ x ¢ matrix and an (involutive)
permutation of the entries of the matrix. We show that the analysis of the
lactorizations of the iterations of these transformations is a precious tool in the
study of lattice models in statistical mechanics. This approach enables one to
analyze two-dimensional g*-state vertex models as simply as three-dimensional
vertex models, or higher-dimensional vertex models. Various examples of
birational symmetries of vertex models are analyzed. A particular emphasis is
devoted to a three-dimensional vertex model, the 64-state cubic vertex model,
which exhibits a polynomial growth of the complexity of the calculations.
A subcase of this general model is seen to yield integrable recursion relations.
We also concentrate on a specific two-dimensional vertex model to see how the
generic exponential growth of the calculations reduces to a polynomial growth
when the model becomes Yang-Baxter integrable. It is also underlined that a
polynomial growth of the complexity of these iterations can occur even for
transformations yielding algebraic surfaces, or higher-dimensional algebraic
varieties.

KEY WORDS: Birational transformations; vertex models; inversion trick;
discrete dynamical systems; nonlinear recursion relations; iterations; integrable
mappings; elliptic curves; Abelian surfaces; Jacobian of algebraic curves;
automorphisms of algebraic varieties; complexity of iterations; polynomial
growth.

1. INTRODUCTION

In previous papers'’) we have analyzed birational representations of dis-
crete groups generated by involutions having their origin in the theory of
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exactly solvable models in lattice statistical mechanics.*"'"” These involu-
tions correspond respectively to two kinds of transformations on gxg¢
matrices: the inversion of the ¢ x ¢ matrix and an (involutive) permutation
of the entries of the matrix.

The analysis of birational representations of discrete symmetry groups
of the parameter space of vertex models has been a powerful tool in lattice
statistical mechanics.®!!) The methods developed in these papers are of
two different types: a systematic search of algebraic expressions invariant
under these discrete groups of symmetries and a visualization of (two-
dimensional projections of) the orbits of these groups of symmetries. When
considering three-dimensional (or higher-dimensional) vertex models the
number of parameters of these models quickly becomes large (64 homo-
geneous parameters,...). It becomes difficult to get an exhaustive list of
algebraic invariants of these groups, or equivalently the equations defining
the algebraic variety corresponding to these orbits. From the point of view
of effective algebraic geometry it is hard, because of the large number of the
variables, to characterize the nature of the algebraic variety. On the other
hand, the visualization of the orbits often provides a very efficient way to
describe these orbits when they are fractal-like sets of points®>% or, on the
contrary, curves foliating the whole parameter space or even surfaces, the
action of one of the infinite-order transformations being like a shift on a
torus (see Fig. | in the following). However, it is much harder to get some
hint on the very nature of these orbits when they look fuzzy (see, for
instance, Fig. 2 in the following). For such cases these methods are no
longer appropriate. There is a need for a complementary approach. The
analysis of the factorization properties of these discrete groups of sym-
metries'' ) performed here provides such a complementary approach. In this
framework a quite general three-dimensional vertex odel (64 homogeneous
parameters) will surprisingly be seen as remarkably interesting.

In refs. 1-3, permutations of the entries corresponding to permutations
of two entries were analyzed. For these permutations, it has been shown
that the iteration of the associated birational transformations presents
some remarkable factorization properties.'!'?) These factorization proper-
ties explain why the complexity of these iterations, instead of having the
exponential growth one expects at first sight, may have a polynomial
growth.!">71%) 1t has also been shown that the polynomial factors occurring
in these factorizations can satisfy nonlinear recursion relations and that
some of these recursions are actually integrable yielding elliptic curves.'™>
These papers have tried, on simple examples of permutations, to shed
some light on the relation between various structures and properties,
such as the factorization of the iterations, the polynomial growth of
the complexity,>'?) and the integrability of the mappings, as well
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as the nature of the various algebraic varieties preserved by these
mappings.

The structures, concepts, properties, and results that emerged in these
studies will be used here? for lattice models of statistical mechanics: vertex
models and also (edge) spin models. The mappings that one considers here
are birational representations of symmetries acting in the parameter space
of vertex models in two, three, or even arbitrary dimensions.

We will first concentrate on a specific two-dimensional g*-vertex
model, with emphasis on g =3, to see how the generic exponential growth
of the calculations reduces to a polynomial growth when the model becomes
Yang—Baxter integrable. Special attention will also be devoted to a three-
dimensional vertex model, the 64-state cubic vertex model, which exhibits
a polynomial growth of the complexity of the calculations. It will be shown
that a polynomial growth of the complexity of these iterations can occur not
only for transformations yielding algebraic curves, but also for transforma-
tions yielding algebraic surfaces, or higher-dimensional algebraic varieties.?
A particular subcase of this three-dimensional vertex model, for which one
of the infinite-order discrete symmetry mappings is integrable, will be seen
to yield remarkable recursion relations (see Section 4.2.2) providing a new
exact result on a three-dimensional vertex model.

This factorization analysis provides a new approach for g“vertex
models with arbitrary number ¢ of colors and arbitrary lattice dimension d.
In this new approach for vertex models the occurrence of polynomial growth
becomes a necessary condition for selecting interesting vertex models.

2. GENERAL FRAMEWORK AND NOTATIONS

Let us consider the more general vertex model where one direction,
denoted direction 1, is singled out. Pictorially this can be interpreted as
follows:

L (2.1)

where i and k (corresponding to direction 1) can take g values, while J and
L take m values.

? Except for a few reminders in Sections 3.1 and 4.2.1 and Appendix C of some results of the
previously mentioned series of papers, all the results presented here are new.

* This happens at least when one can associate a Jacobian variety to these birational trans-
formations, as will be seen in the following.
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One can define a “partial” transposition on direction 1 denoted #,. The
action of ¢, on the R-matrix is given by!'?

(11 R)¢.= R (22)

The R-matrix is a {gm) x (gm) matrix which can be seen as ¢* blocks which
are m X m matrices:

A[1,1] A[1,2] A[L3] - A[l,4]
A[2,1] A[2,2] A(2,3] - A[2,¢q]

R=| A[3,17 A[3,2] A4[3,3] - 4[34] (2.3)
Alg, 11 A[q,2] Alg.3] - Al4,q]

where A[1, 1], A[1, 2],.., A[q, q] are mxm matrices. With these nota-
tions the partial transposition 7, amounts to a permutation of matrices
Ao, ] and A[B, a].

We use the same notations as in refs. 1-3, that is, we introduce the
following transformations, the matrix inverse / and the homogeneous
matrix inverse I:

I R>R! (2.4)
I R-det(R)-R™! (2.5)

The homogeneous inverse / is a polynomial transformation on each of the
entries of matrix R, which associates with each entry its corresponding
cofactor.

The two transformations ¢, and [ are involutions and I>=
(det(R))*"~2..#d where #d denotes the identity transformation.

We also introduce the (generically infinite-order) transformations

and (2.6)

Transformation K is clearly a birational transformation on the entries of
matrix R, since its inverse transformation is f-¢,, which is obviously a
rational transformation. K is a homogeneous polynomial transformation on
the entries of matrix R.
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3. TWO-DIMENSIONAL VERTEX MODELS

3.1. Iterations Associated with the Sixteen-Vertex Model

The I6-vertex model corresponds to the vertex of (2.1) and the
R-matrix (2.3) with ¢ =m = 2. In this case of 4 x 4 matrices, permutation ¢,
has already been introduced in the framework of the symmetries of the
16-vertex model."® Namely, ¢, amounts to a permutation of two 2x2
(off-diagonal) submatrices of the 4 x 4 matrix R.

Remarkably, the symmetry group generated by the matrix inverse [
and transformation ¢,, or the infinite generator K=1, - I, has been shown
to yield algebraic elliptic curves'® in CP,s.

Let us consider a 4 x 4 matrix M, and the successive matrices obtained
by iteration of transformation K=, -I. Remarkably, all the entries of the
successive matrices obtained iterating K on M, do factorize common poly-
nomials. This enables us to introduce at each step reduced matrices,
denoted M,. Moreover, the determinants of these M, also factorize. More
precisely, similarly to factorizations described in refs. 1 and 2, one has the
following factorizations for the iterations of KM

M, =K(M,), M,=K(M,), F, =det(M,),

det{M,) K(M,)
F,=det(M,), F,= Fo M,= Ffz
and for arbitrary n
K(MII ) det(M" )
M"+2= F,2’+l s "+2=F—,3,+1 (31)

One also has the following relation:

L K(M M

KM, >)= (M,12) Mo (3.2)

det(M,,+2)—Fr1+an+3

One can also introduce a right action of K on matrices M, or on any
homogeneous polynomial expression of their entries (such as the F,, for
instance): the entries of matrix M, are replaced by the entries of K(M).
Amazingly, the right action of K on the F, and on the matrices M,
factorizes F, and only F,,"

(Mn)K=Mn+l 'F‘i"’ (Fn)K= n+1 Fli‘n (33)
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Denoting «, the degree of the determinant of the matrix M, and f, the
degree of the polynomial F,, one immediately gets from equations (3.1)
and (3.2) the following linear relations (with integer coefficients):

an+l=3ﬂn+ﬁn+2, 30(,,+1=(1,,+2+8,B,,

an+2+an+3=4(ﬁn+l+ﬁn+3)’ 3ﬁn=ﬂn+l+4lun’ 3an=an+l+16vn
yielding the generating functions (34)
xo(x)=(3x*+ 1) B(x), (Bx—1)-o(x)+4=8x%B(x)

(3.5)
(1+x)-a(x) = 4(1 +x?) - B(x) +4

From these factorizations, one can easily deduce linear recursions on the
series o,, f., M., and v, and then the following expressions for their
generating functions:

_A4(1+43x7) _ 4x
a(x)_ (1‘X)3 3 ‘B(x)_(l_x)p (36)
_x*(3-x) 2t '
I‘(x)— (I—‘X)J, v(x)—(i_x):;

The expressions of the degrees and exponents «,,, 8,, u,, and v,, respec-
tively, read

a,=4(2n*+1), B, =2n(n+1), u,=n>—1, v,=n(n—1) (3.7)

Let us also mention that, for a given initial matrix M,, the successive
iterates of M, under transformation X2 move in a three-dimensional affine
projective space:

K™ (Mg)=al" - My+a\” -M,+al -M,+a" M, (3.8)
K" M)=by M+ b -M;+by"-Ms+b{"- M, (39)
In terms of these homogeneous variables ag, af, a3, aj (or by, b7, b3, b))

the transformation K is represented as a cubic (birational) homogeneous
transformation:

al > b= Y B,(My; Ny, Ny, Ny, N3)

No+ N+ Na+N3=3
(@)™ (@M (@ (@) with i=0,1,2,3
(3.10)



Discrete Symmetry Groups of Vertex Models 1201

(the N, are positive integers), and similarly

by —a"* = Z A;(My; Ny, Ny, N,, N3)
No+ N+ Ny +N3y=13
(BN (BN (BYYN. (b(3"))N3 with i=0,1,2,3
(3.11)

Considering the points in CP,; associated with the successive 4 x 4 matrices
corresponding to the iteration of M, under the transformation K (instead
of K?), one thus gets sets of points (lying on elliptic curves) which belong
to two three-dimensional affine subspaces of CP,s, which also depend on the
initial matrix M, in a quite involved way.

Amazingly, the F, satisfy a whole hierarchy of recursion relations,")
such as

F,,FZ F+4F2 Fn—lF5+2_Fn+3F:21

n+3 " I'n n+l — (312)
Fn—an+3Fn+4_FnFn+1Fn+5 Fn~2Fn+2Fn+3"Fn—anFn+4

Let us recall that this very recursion is integrable, yielding algebraic elliptic
curves.‘!)

Let us remark that, for the 16-vertex model, the two directions are
equivalent. Therefore, in this factorization analysis, one can replace the
transposition ¢, by the transposition on direction (2), denoted ¢,. It
amounts to a relabeling of the rows and columns of the R-matrix. In fact,
the product ¢, - ¢, is nothing but the “total” transposition of matrix R, and
thus commutes with 7.

Let us now consider new examples of vertex models.

3.2. g*-State Two-Dimensional Vertex Models

Let us consider a generalization of the 16-vertex model for an
arbitrary number of spin values. It corresponds to m =g for model (2.1).
The matrix (2.3) is now a ¢* x ¢* matrix.

Similarly to the factorizations described in (3.1), one has the following
factorizations for the iterations of K acting on M, a g% x g matrix:

M, =K(M,), M,=K(M,), F,=det(M,),

det(M
F,=det(M,), F3=_e¥,
F7!
and for arbitrary »
K(M det(M
M”+2=_(2_"_+21)’ "+2=e(—2:,1+1_) (3.13)
Fé Fé

n n
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One recovers relation (3.2), independently of q:

K(Mn+2) _ Mn+3

KM, ,,)= =
( "+2) dCt(M,,+2) Fn+an+3

(3.14)

Moreover, the action of the transformation K again yields the factorization
of F, and only F,, enabling us to define the exponents y, and v,,.

It is clear that these factorizations are straightforward generalizations
of the one described in Section 3.1. From these factorizations, one can
easily get linear recursion relations for the exponents «,, §,, u,, and v,:

%uy3t @ 2=q" (Buei+Buis) oy =(g*=1) B+ Bz
(@°—1) 0,y =0ty +(4°=2) B, (3.15)
(@ =1 -By=Busr+ a0ty (=1 ay=t,  +¢%v,
One deduces the relations in their generating functions:
xoa(x)=[1+(g°~1)x*]-B(x),  (1+x)-a(x)=g*(1+x%)-B(x)+q’
¢*(q* =2)-x*B(x)=[(¢’ — 1) x = 1] -a(x) + ¢

, (3.16)
g xp(x)—g*x=[{g"~ 1) x—=1]- f(x)
¢ xv(x)— ¢ =[(g*— ) x—1]-a(x)
and the following expressions for these generating functions:
RN 31 A Uil VE
(=X [ =(g*=2) x4+ x7]
g’x
ﬁ(.\')= 2 ]
l—x)-[1—(g°=2)x+x*
( \)7[ 7(!1 )x+x7] (3.17)
)X L@ =D =]
T (l=x) [1=(¢*=2) x+x*]
Wox) = (¢°—2)-x*

(1-x)-[1-(g"=2) x+x7]

The expressions of the exponents o,, f,, &,, and v, clearly have (generi-
cally) an exponential growth in terms of n when ¢ is different from 2. This
suggests that the g®-state vertex models are not generically “good
candidates” for integrability when the number of colors ¢ is no longer 2.
Let us recall that a polynomial growth of the calculations corresponds
to cases where the roots of the denominators of the generating functions
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a(x), f(x),... are Nth roots of unity. On the explicit expressions (3.17) one
sees that such a situation can only occur when ¢? is a Tutte-Beraha
number,!!>1%)

, 1 . .
q"=2+t+7, with ¢¥=1 for some integer N (3.18)

A polynomial growth behavior cannot generically occur when ¢ is an
integer different from 2 (or 0..). In general, one does not expect the bira-
tional transformations defined in refs. 1-3 from permutations of entries of
a gxg¢ matrix to be integrable mappings.* It is, however, important to
recall that integrable cases are not ruled out even when ¢ is an integer
different from 2.

3.3. From Exponential Growth to Integrability

It is known that there do exist “Yang-Baxter-integrable” subcases of
the generic 9x9 matrix (and more generally of the generic g°x g’
matrix!'®); how is it possible for such integrable cases to survive in such
a “hostile framework” (exponential growth of the complexity...)? Do these
restrictions on the 9 x 9 matrices change the (generic) exponential growth
of the calculations into a polynomial one?

For heuristic reasons let us, for example, consider a simple pattern
for a 9x9 matrix corresponding to a vertex model introduced by
Stroganov,!'®

1 000b0O0O0 b
000 c¢c0O00O0GOO
00000O0TcO00O
0 ¢c 000000 0O
Rswoe=| 2 00 0 1 0 0 0 b (3.19)
0000000 ¢ O
00 ¢c 000000
006000 ¢ 000
b 0OOODbLOO O 1

*1t is, however. worth recalling the example of the ¢-state standard scalar Potts model, for
which, using the Lieb-Temperley algebra, one can give a matrix representation in terms of
matrices of sizes independent of q, ¢ becoming a parameter in the entries of these matrices.!'”
Therefore one can also imagine being able to define the birational transformations X for
noninteger values of g.
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This model is known to possess two “Yang-Baxter-integrable” subcases‘'?):

1—
c=1-b and C=m (3.20)

o

When restricted to one of the two integrability subcases (3.20), the partition
function of this model can easily be calculated using the inversion trick.®
We consider this example because it is simple (only two parameters and a
single one in the integrable subcases) and yields a rational parametrization
of the integrable subcases of the model.” We restrict consideration to the
first integrable subcase (3.20): c=1—54.

Let us first remark that, in this (rational) subcase, all the birational
transformation symmetries we consider are just homographic transforma-
tions. For instance, the transformations ¢,, I, and K" read

t;: boc=1-b

—b
I b-»—
1+5
(3.21)
2b+1 N.(b)
: _— K" —_—
Kb = D.6)

where the numerators and denominators of the first successive homo-
graphies K" respectively read

N,=2b+1, N,=5b+3, N,=13b+8, N,=34b+21,.
D, =b+1, D,=3b+2, D,=8b+5 D,=21b+13, Ds=55b+34,.
(3.22)

These successive polynomials can be shown to satisfy the following
recurrences:

Nn+l=2Nn+Dln Dn+1=Nn+Dn (323)

The F, and the entries of the successive matrices M, previously defined for
generic 9 x 9 matrices [see {3.13) with ¢ = 3], do factorize:

Fi=—=N,-(b—1)8, F,=—N,-(b—1)%.65 Fy= —N,-(b—1)"0.p%

5 Of course the reader can, as an exercise, replace this model and this form of the 9 x 9 matrix
(3.19) by other “Yang-Baxter-integrable” 9 x 9 matrix patterns, for instance, the solvable
¢*-state models introduced in ref. 18 among many other possibilities.
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and for arbitrary n
F,=—N,-(b—1)"-b""! (3.24)
where the r, are the coefficients of the rational function

14+ 7x2=x3
(1—x)(1—Tx+x?%

FX)=14r x4+, - x24r- X+ - = (3.25)

All the entries of the M, factorize the same polynomial, which enables us
to introduce new matrices M ™ whose entries are polynomial expressions
in b:

M,=-MP"-(b-1), M,= —M5"™8.(b—1).5p,
My=—MP . (b—1)*2.b% .
and for arbitrary #
M,=~M"™. (b—1)™. b (3.26)
where the s, are the coefficients of the rational function

1 —x+48x2—x?
= - - ‘2 . 3 e e =
s(x)=14s5,- X+ -X"+s53-X" + =) = 7x + x0) (3.27)

Let us see how these new factorizations (3.24) and (3.26) are actually com-
patible with the generic ones (3.13).

The new (highly) factorized matrices M
form in terms of the N, and D,,:

int
"

have a remarkably simple

D, 0 0 0 N, O 0 0 N,

( 0 0 0 —N,., O 0 0 0 0

0 0 0 0 0 0 N,., 0 0

0 -N,_., O 0 0 0 0 0 0

M™=] N, .0 0 0 D, 0 0 0 N,
0 0 0 0 0 0 0 N,_, 0

0 0 -N,., O 0 0 0 0 0

0 0 0 0 0 —N,., 0 0 0

N, 0 0 0 N, O 0 0 D,



1206 Boukraa et al.

As it should, this matrix (up to the normalization of R[1, 1]) has
exactly the same form as (3.19) where b has been changed into K"(b)
[taking relation (3.23) into account]. The determinant of M ™ can easily
be calculated:

det(M )= —N;_,-(2N,+D,)-(N,—D,)? (3.29)
Recalling recursions (3.23), we have that this expression reads

det(M ") = —N,,,-N? (3.30)

n—1
Recalling (3.24), (3.26), and (3.30) and factorization (3.13) for ¢ =3, one

can write

ro_det(M, . ) _det(Mm ). (b—1)%mr . po
n+2— F,S, - [-—N"'(b—l)r"-br"_']g

— __N"+2.(b_1)9.:,,+|—8r,,.b9x,,—8r,,_| (331)

This compatibility between the factorizations for the generic 9 x9 matrices
(exponential growth) and the one for the Stroganov model (3.19) corresponds
to the following relation on the r,, the s,, and the B,,:

ﬂn+2=9(sn+l+sn)_8("n+rn—])+1 (332)
or, in terms of the associated generating functions f(x), r(x), and s(x),

B(x)=9x-(1 +x)-s(x)—8x% (1 +x)-r(x)

1
g 12 T4 8 (3.33)

which is verified.

3.4. Stroganov’s Model Outside the Yang-Baxter Integrability

When Stroganov’s model is no longer restricted to the Yang-Baxter
integrability conditions (3.20), the model, despite its simplicity [only two
parameters, and a very simple form for the ¢? x ¢ R-matrix (3.19),..] is
not known to be integrable.

Let us examine the factorization properties outside the integrability
conditions (3.20) [that is, in the whole (b, ¢) parameter space]. The first
factorizations read

Fi=—c*(2b+1)-(b—1)%,  Fo=c"0%b—1)°-h,-g>.. (3.34)
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with
g=—1—b+2b>+c+bc, hy=-2-2b+4b>—bc—c (3.35)

All the entries of the matrix M, factorize the same polynomial, which
enables us to introduce new matrices M 3% whose entries are polynomial
expressions in b and ¢:

M, =MS35"¢.(b—1)-c?, My=—M3". (b—1)%.c%.g,,. (3.36)
Furthermore,
det(M3"°8)=c®® - h, - g3,
det(M3$7°8) = cSpS(b—1)®- (264 1)% - h, - g3,... (337)
with
g:=2—6b>+4b>—c—cb+2b%c—c?—bc?
hy=4+8b—12b%— 16b> + 16b* — 2¢ — 3cb (3.38)
+3b%c + 2b%c — 2¢? — 3bc? — b3 c?

The successive “reduced” matrices M "¢ also have a simple form slightly
generalizing (3.28):

4, O 0 0 B, 0 0 0 B,
/ 0 0 0 -C, 0 0 0 0 0 \
0 0 0 0o 0 o0 -C, 0 0
0o -C, O 0 0 0 0 0 0
MSe:=| B 0 0 0 A, O 0 o B, |(339)
0 0 0 0 0 0 0 -C, 0
o 0 -C¢c, 0 0 0 0 0 0
0 0 0 0 0 -C, 0 0 0
B, O 0 0 B, O 0 0 4, /

There is no longer a relation between the 4,, B,, and C, [like C,= B, _,
for (3.28)]. With this particular form (3.39) the determinant of the
“reduced” matrix factorizes, at least, as follows:

det(M %)= —C}-(2B,+ 4,)-(B,~ 4,) (3.40)
The previous expressions g,, #,, g1, h, simply read

g|=Bl-Al’ /1|=ZB,+A1, g2=Bz—A2, 112=232+A2 (3.41)
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Therefore one has a representation of K as a birational transformation
in CP,:
(All7 Bn’ Cn) - (An+l’ Bn+ 19 Cn+ l)
_ Cn : (Bn + An) (Bn - An) ) (ZBn + An) Bn ) Cn
B H, ’ H " H

n

(3.42)

n

and a representation of K="
(An’ Bn’ Cn)_’ (An—h Bn—la Cn—l)

B"‘(C"_A") _Bll‘CI' (A"+CII).(AII_2C")>
( L" ’ Ln ’ L" (3'43 )

where H, is the GCD polynomial of C,,- (B, + 4,), (B,—A4,)-(2B,+ 4,),
and B, -C, and, similarly, L, is the GCD polynomial of B, -(C,—A4,),
-B,-C,, (A,+C,)-(A,—2C,), respectively. The transformation (3.42)
can be written in a compact way:

MStrog K(M Strog)

e I (3.44)

n

The first 4,, B,, C, read

Aog=1, B,=5, Co= —c
A =—c-(b+1), B, =(b-1)-(2b+1), C,= —bc
Ay= —bc-(2b*~b—c—bc—1) (3.45)
B,=(2b*—b+c+bc—1)-(4b*—2b—c—bc—2)
Cy=—bc-(b—1)-(2b+1),..
Introducing the polynomials

X Bn—l n—l’ Yn=2Bn—l+An—la Zn=Bn—l+An—l (346)

we find that the polynomials 4,,, ,, B, , ,, C,., simply read

Cn Xn Cn
A,,+1='17'Z,,, Brt«f—l:F'Yna Cn+l=7_1_'Bn (347)

The polynomials Y, and Z, do not factorize, with the polynomials X, and
the polynomials C, (more precisely the C,_,) are divisible by H,. Defining
the polynomial X by

X

H_2n
xXi== (3.48)

n
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one remarks that these X¥ do not factorize. Moreover, one also remarks
that H, is actually equal 10 Y, _,. The first expressions of the GCD H, (or
equivalently of the Y, _,) read

Hy=Y,=2b+1, H,=Y,=4b>—2b—2—bc—c
Hs=Y,=4—3bc— 12b>+8b— 2¢ + 2b%¢ (3.49)
+3b% — b2? — 3bc? — 2 + 16b% — 16b°,...

In terms of these X¥, Y,, and Z,, the 4,, B,, and C, are

”n>

A::+1=XH

n—2

'Xzf:’—s'Xf—r“Xfl‘Bo‘Co‘ZnH
Bn+l=X,I;l+1 ) Yn+l (350)
Cn+l=XH 'X'I;I—ZIX:I—B'“X?'BO'CO'Yn

n—1

A more complete list of the successive expressions of X7, ¥,, Z, is given
in Appendix A.

Representations (3.42) and (3.43) are nothing but the transformation
K (or K7!) represented as a birational transformation on (b, ¢). Let us, for
instance, give the representation of I and ¢, as birational transformations
on (b, ¢):

—b (142b)-(1-0)
1+ (1+b)-c

I (b,c)—»( > t;: (b, c)=(c, b) (3.51)

Let us denote d, the degree of polynomials 4, (or B, or C,) and d(x)

the associated generating function. The degrees of the X7, Y,, and Z,,
denoted d}f, d, dZ, respectively, satisfy
d:},=1+dn—2’ d:rzdf=dn—l (352)
The relation B, ,=X7 .Y, yields
1
d,=d¥+d)=1+d,_,+d,_,, d(x)~(l—x—x2)—1_v=0 (3.53)

Thus d(x) reads

1
(1—-x)-(1 —x—x?%)

dx)=1+d,-x+d, - x*+d;- x>+ --- =

=142x+4x*+ Tx> + 12x* + 20x° + 33x°
+54x7 +88x% 4+ 143x° +232x1°0 4 ... (3.54)

822/78/5-6-2
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The generating function d(x) corresponds to an exponential growth of the
complexity of the iterations like z" where z is the largest root of 1 +z —z?
(z=1.618033989...). This growth has to be compared with the exponential
growth corresponding to the generic 9 x9 matrices (see Section 3.2), for
which one has an exponential growth like z" where z is the largest root of
1—7z+ 2% (z=6.854101966...).

This exponential growth for model (3.19) is confirmed by the fact that,
seeking algebraic expressions of b and ¢ [P(b, ¢)/Q,(b, ¢)] invariant under
the transformation K [or the transformation 7 and ¢,; see (3.51)], we have
not found any such expressions up degree ten in b and ¢ for P,(b, c) and
Q,(b, ¢). One expects a quite “chaotic” behavior for the iterations of K out-
side the two integrability conditions (3.20).

3.5. Back to Integrability: The Inversion Trick

Since we claim that the various polynomials of the two variables (5, c¢)
previously introduced (4,, B,, C,, X”, ¥,, Z,,..) may be useful for a
better understanding of Stroganov’s model outside the Yang-Baxter
integrability conditions (3.20), it is natural to look at these polynomials
when restricted to the Yang—Baxter integrability conditions (3.20). For this
purpose let us recall the (rational) well-suited parametrization of the model
restricted to (3.20) (more precisely, c=1—b):

-1

X 1+./5
p @m0 e w5 (3.55)
14+ x 2

and the expression of the partition function per site deduced from the
inversion trick,"*?

Z(b, 1 —b):wz-ﬁ F(x)- F(1/x) (3.56)

1+x

where F(x) is an Eulerian product:

Fx)y= ] w(“#)'(“ﬁ) (3.57)

The expressions of the first X7, Y¥,, Z, read, in terms of the variable x of
(3.55),

h X—o’ _o'x—o? _oxto”!

' ol +x) T o(l+x) T ol +x)
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n (x—0’)(w’x-1)
(1+x)w?

s =

-4
Y2=(x—w2)(a)6,\ w™?)

(1+x)?w?
_(x—o?) (@ x+0?)
2= (1+x)? @?
XH=(x——w2)z(x—w‘z)(x—w‘6)w5
} (1 +x)(0x—1)
y (-0 x-—o ) x-—0 M e’
. (1+x)*
232 —12y, -2y S
Z3=(x_w) x+o )N x—0)w (3.58)

1+x)° yous

It is clear that the polynomials X7, Y, Z,,,... are closely related to the
various factors occurring -in the partition function (3.56), and more
precisely in the “Eulerian” product (3.57).

When one considers weak-graph expansions®® of this vertex model
when it is no longer restricted to the Yang—Baxter integrability conditions
(3.20), the “complexity” of the polynomials in 4 and c is very similar to
that encountered with polynomials X”, Y,, Z,,.. seen as polynomials of
the two variables b and ¢ (see Appendix A). One can hope that these poly-
nomials are well-suited to “decipher” the complexity encountered in weak-
graph expansions of models which are not Yang-Baxter integrable."**

Therefore the following question arises: Is it possible that the inversion
trick1%23) could, using such polynomials well-suited for the factorization
analysis, yield an expansion in agreement with the weak-graph expansion?
This would open a new class of models in lattice statistical mechanics:
models which are “computable” without being “Yang-Baxter integrable.”®
We will address this very important question in forthcoming publications.
We, however, have a negative prejudice on this model, since the birational
transformations K are not generically integrable [no foliation of the (b, ¢)

plane in algebraic elliptic curves, chaotic behavior of the iteration of K
¢Such models do exist: for instance, disorder solutions'**?*) provide some examples of
“computable” models that are not Yang-Baxter-integrable. However, such disorder solutions
correspond to dimensional reductions of the model. We are seeking here two-dimensional
(or higher-dimensional) models with a genuine two-dimensional complexity.
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outside the integrability conditions, exponential growth,...]. Therefore we
will address this “computability-versus-Yang--Baxter-integrability” question
on better suited models for which a foliation of the whole parameter space
in terms of (algebraic) elliptic curves does exist.” The existence of these
elliptic curves yields analyticity properties in one variable which are known
10 be a key ingredient for the inversion trick to work.*->%

3.6. Stroganov’'s Model for ¢g=4

These calculations can straightforwardly be generalized to arbitrary ¢,
that is, g2 x g> matrices.

The way the exponential growth “degenerates” into a polynomial or
linear growth [here, for model (3.28), the situation is even more drastic:
there 1s no growth; seen as a homogeneous transformation, the degree of
the N, or D, is 1] is exactly the same as for g =3. We have again factoriza-
tions (3.24) and (3.26), but now the generating functions r(x) and s(x) are,
respectively, for arbitrary g,

Hx) = 14+ (g2=2)x2—x? B x[(¢>—=1)—x]
=)= (g?-2)x+x*]  (1-x)[1—-(g>-2)x+x*]
(3.59)
_ l=x+(@-1)x*—x> (?=2)x
= o=@ —2x+ T U=l =@ =2 x+ ]
(3.60)

The compatibility relation between factorizations (3.24) and (3.26) and the
generic factorizations (3.13) reads

ﬂn+2=q2(sn+l+sn)_(q2_1)(rn+rn—l)+1 (361)

yielding for the associated generating functions «(x), r(x), and s(x)
B(x)= (1 +x)[g°xs(x) — (¢° — 1) x*r(x)]

|
+:—1—2x+(q2—2)x2+(q2—1)X3 (362)

"We have called these models “quasiintegrable.”'® The most spectacular example of
such a quasiintegrable, but not (generically) Yang-Baxter-integrable, model is the I6-vertex
model '
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Let us note that s(x) has a remarkably simple form for g2 =2. Let us also
note that the difference between r(x) and s(x) is quite simple:

X
1—(g>—2)x+x2

rix)y=s(x)+ (3.63)

Of course this does not completely rule out integrability for ¢ different
from 2: many integrable subcases of the g*-state vertex model are known
in the literature, but the corresponding patterns of the R-matrices are very
specific.*®!

In contrast, it will be seen in Section 5 that polvnomial growth occurs
when some of the “arrows” of the vertex models take two colors. It will
be seen that this polynomial growth is closely related to the fact that the
transformation K can thus be represented as a shift on a Jacobian variety
naturally associated with K.

4. THREE-DIMENSIONAL VERTEX MODELS

4.1. Introduction

Let us now recall that, for a three-dimensional cubic vertex model,3-°’

the transposition ¢, associated with one of the three directions of the cubic
lattice has already been introduced'®®’:

The action of ¢, on the three-dimensional R-matrix is given by
(1R ’lllljzz'}I = R{:E?J (4.1)

with similar definitions for 7, and t;.%%?

Such a situation corresponds to m = ¢” in the framework described in
Section 2. Of course, one can define 7, and ¢, on this model because the
¢*-dimensional space decomposes into the tensorial product of two
g-dimensional spaces.

We will restrict consideration in this section to ¢ = 2; the results for an
arbitrary value of ¢ are given in Section 5. The analysis of the factorizations
corresponding to the iterations of the transformation K for ¢, for a general
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64-state three-dimensional model (generic 8 x 8 matrix) gives the following
factorizations:

M,=K(Mo),  f, =det(M), ﬁ=®?%)
KM, det(M
M2= (f3 )’ f3= feg(f:)
J1 1 2 (4.2)

M =K(M2) _ det(M,)

= STET

K(M,) det(M,)

M4=—, = 7w 7 i

oy TR

and, for arbitrary n, the following “stringlike” factorizations:
K(Mn)=Mn+l fi 'flsl—l : (fn—2 ',fn—} "'fl)G (43)
det(Mn)=./‘n+l f: - Z—l : (.fn—?. '];1—3 'fn—4 o 'fl)s (44)
yielding

K(Mn) . Mn+l
det(Mn)— (fl 'f2 "'/rn—l)2 '.fn'f;r+l

From the factorization (4.5), one easily gets a relation between the gener-
ating functions a(x) and f(x):

K(M,)=

(4.5)

(1+x)a(x)—&:fi)ﬁ(x)—8:o (4.6)
leading to
_8(1+x)° &
alx)= TSR B(x)= 1—x) (4.7)

The “right action” of K also yields factorizations of f; and only f: one gets
again Eqgs. (3.3) (with of course different expressions for the p, and v,).
These equations, combined with (4.6), give the following expressions for
u(x) and v(x):

x(1 +x)(4—x) v(x)_x(3+2x+x2)

U—xp =T (%) (48)

plx)=
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One notes that «, and f, are, respectively, cubic and quadratic functions of
n [to be compared with (3.7)]:

0, =8Qn+1)2n+2n+3), B,=dn(n+1) (4.9)

At first sight it is amazing that such a polynomial growth occurs with
involved “stringlike” factorizations, such as (4.3) and (4.4).

The occurrence of polynomial growth of the calculations of the iterations
could correspond to situations where the algebraic varieties generated by K
are Abelian varieties.®® One knows that algebraic varieties having an
infinite set of automorphisms cannot be of the so-called general type.'?®?
This is the case here: we actually use the symmetries of the algebraic
varieties (birational automorphisms) to visualize them.!*-&5%.11)

The analysis of the iterations of the transformation K has been per-
formed in more detail for a particular 8 x 8 matrix corresponding to a three-
dimensional generalization of the Baxter model.®®’ This analysis shows
that the orbits of the iterations lie, in this subcase,’®® on an algebraic
surface given by the intersection of quadrics.®*' We will come back to this
model in Section 4.1.1.

For the general § x 8-matrix considered here, the orbits do not lie on
algebraic surfaces, but on higher-dimensional varieties.®®) Introducing
Pliicker-like variables closely related to the minors of the R-matrix,‘" here
4 x 4 minors, one can, for this three-dimensional vertex model, explicitly
write down the equations of these algebraic varieties as the intersection of
quartics. In fact, the analysis of these algebraic varieties”® is difficult to
perform: are these varieties Abelian varieties, or even products of elliptic
curves,” or any other algebraic varieties which are nor of the so-called
“general type”®® (like K3 surfaces,'®..)7 We hope that the occurrence of
polynomial growth of the associated iterations could help to clarify the
kind of algebraic varieties associated with these birational transformations.

On the other hand, this could provide a new way to analyze three- or
higher-dimensional vertex models. Of course, it is necessary to analyze
simultaneously not only K, but also K, and K, the birational transforma-
tions corresponding to the two other directions of the cubic lattice and to
their associated partial transpositions ¢, and ¢5.

8 Examples of algebraic varieties which are not of the general type are, for instance, in the
case of surfaces, Abelian surfaces, hyperelliptic surfaces (surface fibered over CP, by a
pencil of elliptic curves), Enriques surfaces,... .

® There exist some systematic procedures to see if an algebraic surface is a product of curves,
but they are extremely difficult to implement.

' The birational transformations considered here actually densify in a quite “uniform way”
the algebraic surfaces we get (see Figs. la—1c): this seems to exclude automorphisms of K3
surfaces.
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Let us try to better understand the relation between polynomial
growth and the occurrence of various examples of algebraic varieties which
not of the “general type.”

For this purpose we now examine different subcases of this three-
dimensional vertex model. A first subcase providing an example of a guad-
ratic growth associated with algebraic surfaces which are the product of two
algebraic elliptic curves is detailed in Appendix B1.

4.2. A Three-Dimensional Generalization of the Baxter Model

Another (less academic) example of “restricted factorization”™ corre-
sponds to vertex models defined in refs. 8, 9, and 31, which can be seen
as a three-dimensional generalization of the Baxter model. This model
corresponds to the following K-compatible conditions:

RO =RT0R (4.10)
RiZ =0 il iyiyisjyjaja= —1 (4.11)

Let us assume that the order for the “in” triplet (i, i», {;) as well as
the “out” triplet (/,, /., j3) is as follows:

[(1,2,3,4,56,7,8)]
={{(+1L 4+, +1),(+1, +1, —1),
(+1, =0, +1), (+1, =1, =1), (=1, +1, +1),
(=1L +1, -1),(=-1, =1, +1),(—1, -1, —1)] (4.12)

This order singles out direction 1, and is therefore well-suited to
analyze the transformation K.

With this ordering, conditions (4.10) and (4.11) yield the following
8 x 8 matrix:

/aOOkO]mO

0O b ¢ 0 o 0 0 d
0 e fOp O 0 g

w la0o0no i jo

R=l1o,;, i0onoo0 4 (4.13)
g 00 p O f e O
\dOOnchO
0m il 0 k 00 a
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With another order for the rows and columns [namely
(1,2,3,4,5,6,7,8)—(1,4,6,7,8, 5, 3,2)], this 8 x 8 matrix can be seen as
two identical 4 x 4 block matrices:

a k I m
o
B = Z , ! é (4.14)
d n ¢ b

These two block matrices are respectively associated to the two “odd” and
“even” subspaces:

[(+l’ +1a +l)y(+19 _19 _l)$(_19 +17 —1)’(_1s _1’ +1)]
and
[(=1, =1, =1), (=1, +1, +1), (+1, =1, +1), (+1, + 1, —1)]

With this new order the three directions 1, 2, and 3 are on the same foot-
ing: it is better suited to analyze the group generated by all the (four)
inversion relations of this three-dimensional vertex model'®®’ (of course the
transformation ¢, becomes a more involved permutation of the entries).

For this three-dimensional generalization of the eight-vertex model, -3
introducing the same f, as the ones given by (4.2)-(4.4), one verifies the
factorizations

Mi=K(Mo),  fi=det(Mo)  fom detj‘,ﬂ” )
1
K(My) det(My) (M)

M,= . fy=aal g 4.15
=g S ey @)
det(M,) K(M,) det(M,)
= . M= , StV

Jo=Tr g “r ST

Let us note that one has more factorizations than in the generic case (4.2).
Moreover, for arbitrary n, one has the following factorizations, but now
with a fixed number of polynomials f,,, instead of the “stringlike” factoriza-
tions (4.3) and (4.4):

K(Mn)=Mn+l'f,3:' s det(Mn)=.fn+l'f:' : (416)

n—1° n—1
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yielding
K(Mn) — M"+l
dCt(M,,) fn~1 '.fn'f‘n+l

Since the 8 x 8 matrix (4.13) is, after a relabeling of the rows and columns,
the direct product of two times the same 4 x4 matrix, and since the
homogeneous transformation K acts in the same way on these two blocks,
all these f,, are exactly perfect squares.

It is illuminating to see how factorizations like (4.2)-(4.5) become
{4.15)—(4.17). One has the same first factorizations up to M, and f;. They
first become different with M, for which one gets an extra factorization of
fi- Obviously, in the factorization of f,, one no longer has a factorization
of /¥ [because an extra factorization of £, in all the entries of M, yields an
extra factorization of f3 in det(M;)]. These slight modifications, however,
have the amazing consequence of changing the “stringlike” factorizations
(4.3) and (4.5) into factorizations with a fixed number of terms [see rela-
tions (4.16) and (4.17)].

The generating functions a(x) and B(x) satisfy

R(M,)= (4.17)

(1+ x) a(x) — 8(1 + x + x2) B(x)—8 =0 (4.18)
leading to
_ 8(1+4x+7x?) &
d(x)————(l_x)3 , ﬂ(x)_—(l—xf
(4.19)
(Y}_x(l+x)(4—-x) V(Y)_3x(1+2x)
= > YT

One notes that a, and g, are both quadratic functions of n:
a,=8(6n+1), f.=4n(n+1) (4.20)

One remarks that the two generating functions f(x) and u(x) are the same
as for the general 8 x 8 matrix (see Section 4.1), the difference being in the
o, or the v, [or equivalently in the generating functions «(x) and v(x)]: the
cubic growth of the «, or the v, [see relation (4.9)] is replaced by a quad-
ratic growth [see relation (4.20)].

In fact this modification of a “stringlike” factorization into factoriza-
tions with a fixed number of terms is not as drastic as it looks at first sight.
Let us, for instance, define, for an 8 x8 matrix of the form (4.13), the
variables /%" and the successive matrices M """ from the “stringlike”
factorization relations (4.3) and (4.5), which are valid for general 8 x 8
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matrices, and therefore, a fortiori, for matrices of the form (4.13). We have
just seen that an extra factorization occurs for model (4.13) (M,,..). It is
amusing to remark that the variables {58 defined from (4.3) and (4.5) and
the variables f, defined from (4.16) actually coincide! This can be proved
recursively. Let us denote by y, the multiplicative factor between M,
[defined by (4.16)] and M Sine; Mstine = . M, One immediately gets,

from (4.3) and (4.16), the following relations:

1 =(fl'f2"'f;1-2)6 and .fn _fl'fZ"'.fn—li

2 string —
Yn+1 f;l—l'yn fn Yn-1

It is then simple to show recursively that y,=f,-f5---f,_, and therefore
that f, = f'""& This means that this stringlike factorization may be seen, to
some extent, just as a “propagation” of the extra factorization occurring
with M. This explains that the generating functions u(x), f(x) are actually
identical for matrices of the form (4.13) and for general 8 x 8 matrices [see
(4.7), (4.8), and (4.19)].

If one relaxes the spin reversal constraint (4.10) {for instance, just
relaxing the equality between M [1, 1] and M,[8, 8] in (4.13)}, which
means that, after relabeling, the 8 x 8 matrix can be written as two noniden-
tical 4 x4 block matrices, one gets back to the above-detailed “stringlike”
Sactorizations of Section 4.1. Of course, if one relaxes the “charge-conserva-
tion” constraint (4.11) [for instance, just make M,[1,2] nonzero in
(4.13)], one also gets back to the above-detailed “stringlike” factorizations
of Section 4.1.

Let us note that the orbits of K can be shown to yield algebraic
varieties in CP,s given by the intersection of quadrics.*>"!

(4.21)

4.2.1. A Nine-Parameter Three-Dimensional Generalization
of the Baxter Model. The visualization of the orbits of K has been
performed in refs. 8 and 9 for the particular subcase which amounts to
imposing, together with (4.10) and (4.11), that the matrix R of (4.13) be
symmetric.

Ry = RUL) “22)
In this subcase one clearly gets surfaces and it has been shown that these
surfaces are algebraic surfaces given by the intersecton of quadrics.!"-%3-12
The explicit expressions of these quadrics have been written down in the

""" The occurrence of quadrics is closely related'™ to the occurrence of 4 x 4 matrices like
(4.14) for model (4.13).

2 When conditions (4.10) and (4.11) are relaxed one no longer gets (algebraic) surfaces, but
higher-dimensional varieties.
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particular subcase of the model defined by (4.10) and (4.11) together with
(4.22).¢4-%-3D Condition (4.22) is clearly preserved by the transformation 7
and ¢, -t,-t; (the matrix inversion and the matrix transposition). More
rearkably, condition (4.22) is actually preserved by the three other inver-
sions®®) of this three-dimensional vertex model, namely I, =¢,-1-1,-15,
I=t,-1-t,-t3,and Iy=t5-1-t,-t,. This is a consequence of the fact that
condition (4.22) is preserved by the partial transpositions ¢,, ¢,, and t;.
With this last condition the three-dimensional vertex model looks even
more closely like a generalization in three dimensions of the symmetric
eight-vertex Baxter model.®"®’ When condition (4.22) is satisfied together
with conditions (4.10) and (4.11), the two identical block matrices (4.14)
depend only on ten homogeneous parameters. Using the notations intro-
duced in ref. 9 or ref. 31, one can introduce ten homogeneous parameters:

a k I m a d, d, d,

h i di b, ¢3 ¢
=1 =% 6 423
g p S e d, ¢3 by ¢ ( )

d n ¢ b dy ¢ ¢, b

Of course, the transformation ¢,, which is the block transposition of the
two off-diagonal 4 x 4 matrices, and also transformations ¢, and ty become,
as a consequence of the relabeling, new permutations of the entries of this
4 x 4 matrix B33V

boged, qord (i k)=(1,2,3) (4.24)

Actually, and quite remarkably, there exist four quantities which are
invariant by all four generating involutions I, I, I, I, and therefore the
whole group I';, they generate. Let us recall the results of ref. 31.

Let us introduce

ab, +byby—ci—d3, Cyds— sy (4.25)

and the polynomials obtained by permutations of 1, 2, and 3. They form
a five-dimensional space of polynomials. Any ratio of the five independent
polynomials is invariant under all four generating involutions 1, 1,, I,, I;.
The parameter space CP, is thus foliated by five-dimensional algebraic
varieties invariant under the whole group I';p:

P(a,..., d3)
0.(a,.. d3)

where P; and Q; are chosen among the quadratic polynomials (4.25) and
the one deduced by permutations of directions 1, 2, and 3.

= const (4.26)
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Fig. 1. Two-dimensional projection of the iteration of the transformation K* acting in the
nine-dimensional parameter space of the three-dimensional vertex model (4.13) corresponding
to a symmetric 4 x 4 matrix (4.23).

Considering the subgroup of I'5, generated by two involutions among
these four, or equivalently considering the iteration of K only,'? one can
show that the orbits of this transformation are algebraic surfaces given by
intersection of quadrics.(*-*11-13)

These additional quadrics have been written explicitly®'» '

ab, —b,b,—c*—d?, a+b))c,—d,ds—c,c
1 23 1 ( l) 1 243 2¢3 (427)

(by+b3)d) —dye3—dscy

13 Since / commutes with the matrix transposition ¢, - f, - 3, the product of two inversions, for
instance, 7, -I=t,-1-t;-1,-15-1=K?-1,-1,- 14 is equivalent, up to the matrix transposition
1)1y 15, to K2

! One should note a misprint in ref. 31: one should read ab, —b,b5—c3~d? instead of
ab,—byby—ci+d3.
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Fig. 1 (continued)

Figures la-lc show clearly that the orbits of K are (algebraic) sur-
Jfaces. These orbits strongly suggest an interpretation in terms of curves
winding around a two-dimensional torus in the generic “incommensurate”
situation.

In contrast with the situation encountered in Section 3.1 [see relation
(3.8)1, the successive iterates of M live in the whole nine-dimensional affine
matrix space (4.23):

K*(Mg)=al" My+a” M, +al M+a" Mg (428)

The visualization of the orbits of K has also been performed when one
relaxes the matrix symmetry condition (4.22). One no longer finds surfaces.
Figures 2a-2c illustrate such a situation. Figure 2a corresponds to an orbit
for an initial matrix “almost” symmetric (symmetric up to 10~°). This first
figure, which corresponds to a very small asymmetry of the initial matrix,
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Fig. 1 (continued)

may look similar (at least for the first 10° iterations) to Figs. 1a-Ic. In fact,
one can see in Fig. 2a that the density of points is more “fuzzy” compared
to Figs. la—1c, which suggests a curve moving on a two-dimensional
torus. The density of points of Figs. 2b and 2c clearly corresponds to the
projection of points living in algebraic varieties of dimension greater than
two.
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Fig. 2. Two-dimensional projection of the iteration of the transformation K? acting in the
15-dimensional parameter space of the three-dimensional vertex model (4.13) corresponding
to an “almost™ symmetric 4 x 4 matrix (4.23).

These results have to be compared with the one given by Korepanov?

or the one described in Appendix C. The fact that a polynomial growth
occurs when some of the “arrows” in the vertex models take two colors and
that exponential growth (generically) occurs when the number of colors of
the “arrows” is no longer 2 {see Section 3.2) deserves some comment: this
polynomial growth is related to the fact that the transformation K can be
represented as a shift on a Jacobian variety naturally associated with K. We
previously recalled that algebraic varieties having an infinite set of auto-
morphisms cannot be of the so-called general type.®®® The fact that one can
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Fig. 2 (continued)

associate with the algebraic surface given by the intersection of quadrics
(4.27) and (4.25) some Jacobian variety should help to characterize in
more detail these surfaces which are not of the general type.'*

4.2.2. An Integrable Subcase of the Three-Dimensional
Generalization of the Baxter Model. In order to shed some light
on the relations between the polynomial growth and the occurrence of
algebraic varieties which are not of the so-called “general” type™® (Abelian
varieties, products of elliptic curves,...), let us consider a situation for which
elliptic curves otcur. At this point, it is worth recalling that, for particular
patterns of the three-dimensional generalization of the Baxter model
considered in Section 4.2.1 [conditions (4.11), (4.10) together with the
additional condition (4.22)], the iteration of K (or K) can actually yield

'3 Note that the space where this Jacobian variety lives is, in general, not the same as the
parameter space CP_:_, where these algebraic varieties generated by X live.

822/78/5-6-3
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Fig. 2 (continued)

elliptic curves.'®® These particular patterns amount to imposing that the
initial matrix (and therefore the successive matrices M) is invariant under
the permutation of the two directions 1 and 2. In fact we will see in this sec-
tion that there is no need to impose the matrix symmetry condition (4.22)
to get integrable subcases of (4.13).

With the previous order (4.12) for the rows and columns of the 8 x 8
matrix, these additional conditions read

R[1,6]1=R[1,7], R(2,8]=R[3,8], R[2,5]=R[3,5]

R[4,6]=R[4,7], R[2,2]=R[3, 3], R[2,3]1=R[3,2]

Recalling matrix (4.13) and its notations, this symmetry between directions
2 and 3 yields the following additional equalities among the entries: m =/,
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j=1 g=d, e=c, f=5, and p=n. The corresponding 8 x 8§ matrix thus
depends on fen homogeneous parameters:

a 00 kKO0 [ I 0
0 b ¢c 0O n 00d
0 ¢c b 0n 00d
3 g 00 A O i [ O
= 4,
R 0 i i 0O h OO0 ¢ (4.29)
d 0 0n 0 b ¢ O
d 0 0n 0 ¢c b O
0/ I 0 kK 0 0 a
or on the two identical 4 x 4 block matrices (4.14):
a k I 1
P A (4.30)
d n b c ’
d n ¢ b

This 4 x4 matrix is invariant under the permutation of directions 2
and 3, which amounts to permuting the last two rows and columns of the
two four-dimensional subspaces

[(+1’ +17 +1)!(+1’_1’_1)’(_1a +l’_1)’(_13—1a +1)]
and
[(_la_l’_l)’(_la +1,+1)9(+19_1’ +1)’(+17 +1’—1)]

Imposing the additional constraints (4.29), one remarks that the fac-
torizations (4.16) and (4.17) are slightly, but definitely, modified as follows:

det(M
My=KMy),  fi=deiMo), ==
1
K(M,) det(M,) K(M,)
M,= , = . My=— 4.31
= Peaa MoEpag W
det(M5) K(M,) det(M,)
= -0, M =05 =TT R g
L=y Mmoo
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and for arbitrary »

K(Mn)=Mll+1'f fnfl n—-2 det(M) .fn+l f i —l fn 2
(4.32)
yielding
, K
&M, =) _ Mo (4.33)

det(Mn) —f;l—Z ’./;1—1 'f'l './;1+1

Note that the “universal” relation (4.5) is actually modified for subcase
(4.29). The new polynomials, defined in this restricted (integrable) subcase
(4.29), can actualily be shown to satisfy nonlinear recursion relations. Since
the f, are perfect squares, one can introduce their square roots f, = f 12
Remarkably, these polynomials f, satisfy the same hierarchy of recursion
relations as for the 16-vertex model (see Section 3.1 and ref. 1):

f;x(f:1+3)2 fn+4 n+l 2 _ f:l—l(f;l+2)2_f;!+3(f;1)2

' 1 — g Y] 1 , rpr (434)
fn—lfn+3fn+4 fnfn+lfn+5 fn—an+2fn+3_fn—lfnfn+4
or
f:r+1(f::+4)2f:;+5_f:z+2(f:|+3)2f;x+6
(foe2 frossfusr=Fufneafnss)
_f;1+2(f:1+5 fn+6 fn+3 f:1+4)2f:1+7 (435)

_(f:t+3)2fn+4fn+8 fn+lf;z+5(f:l+6)2

These recursion relations are known to yield elliptic curves."'™ The
generating functions a(x), f(x), pu(x), and v(x) read

_8(L+ 5x 4 3x7 + 7x%) &

afx)= (T+x)(1-x)* ° 13(.r)—(1+x)(1_x)3 (4.36)
- _X(5+2x2—x3) . _M

)= =) )= T @)

The integrability of this subcase (4.29) is thus associated with the
occurrence of one more singularity [compare with (4.7) or (4.19)].

In contrast with the situation we had in Section 3.1 [see relation
(3.8)], the successive iterates of M, belong, for this subcase (4.29), to a
seven-dimensional affine subspace of the nine-dimensional affine matrix
space [(4.29) depends on ten homogeneous parameters’

KZH(MO) — ag’) ) MO + a(l") . M2 B ag") B M]4 (438)

which is a codimension-two subspace of the space where the matrices M,
live.
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The equations of these elliptic curves can be simply written down as the
intersection of the quadrics and of the hyperplanes preserved by K? [see
(4.29)]. For the model (4.23), analyzed in refs. 8 and 9 (see Section 4.2.1),
which amounts to imposing the Boltzmann matrix to be symmetric [condi-
tion (4.22)], these quadrics are (4.25) and (4.27), and these hyperplanes
read, with notations (4.23),

b2=b3, Cy=2C3, d2=d3 (4.39)

4.2.3. A Three-Dimensional Generalization of the Six-Ver-
tex Model. Another example of “restricted factorization” corresponds
to the vertex model defined in refs. 8, 9, and 31, which can be seen as a
three-dimensional generalization of the six-vertex model.*") The recursion
relations are a little bit more involved compared to the previous examples,
but still yield polynomial growth with similar generating functions.
Detailed calculations are given in Appendix B2.

5. GENERALIZATION TO d-DIMENSIONAL VERTEX
MODELS AND MONODROMY MATRICES

We consider the matrix (2.3) for an arbitrary m-dimensional space
when there are only two spin states in direction 1, that is, g=2.

The transposition ¢, amounts to permuting two off-diagonal m xm
submatrices of this 2m x 2m R-matrix, 'S

t: (A B>—+<A C) (5.1)
C D B D
where A4, B, C, and D are m x m matrices.

Such a formalism can represent many different situations encountered
in lattice statistical mechanics for vertex models. Namely, it can describe
d-dimensional vertex models as well as monodromy matrices.*® These
monodromy matrices can be written as (5.1), where the matrices 4, B, C,

and D are now 2" x 2" matrices. Let us give a pictoral representation of
the two-site case (N =2):

l A (5.2)

'S This problem exactly corresponds to the one considered by Korepanov.??
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For d-dimensional vertex models, m is equal to 29~ . In this case one
can also consider transpositions I, f5,.., Iy_;,*° like the £, associated
with the d — 1 other directions, and of course one obtains similar results for
all the ¢,.

For arbitrary m (equal to 27! or not), the analysis of the factoriza-
tions of the iterations of the transformation X yields

det(M K(M,)
M, =K(M0), fl = det(M,), fzzfz(TilT), M2=fz,,,_]5
1 1
det(M,) K(M,) det(M;)
f3 =W2_)’ M3 _fS 2m 5 f4 =f‘:(m—2).f;.f§(m—2) (53)
K(M;) det(M
M, 3 fiz (M,)

f%(Zm— 5) fg .fgnl—S’ f? _f;(m—z) f; 'fi(m— 2)
and, for arbitrary n, the following “stringlike” factorizations:

KM)=M, - [ oo 2277 f,, s SR s (54)
det(M,)=fo 1 S22 ST L3052 s

SR MR PPU (5.5)
Equations (5.4) and (5.5) yield the following relation independent of m:

. K(M,) M, .,
RM )= = 5.6
( ") det(Mn) (fl'f2"'.fn—])2'_fn'_fn+l ( )

Equation (5.6) gives again a generalization of Eq. (4.6) for arbitrary m:

2m(1 + x?)

(I +x)-a(x)— =

B(x)—2m=0 (5.7)

From (5.4) and (5.5) and also from (3.3), which is indeed valid, one gets

(1 —x)* 4 2mx(1 + x?) 2mx

oa(x)=2m T+ 00 —x)° , [3(x)=(1_—x)3 (5.8)
_x(2m—4+43x—x?) . _x[@m=35)(1 + x*)+ 5x+x°]
M=y L ey

(5.9)

Let us underline that, for m =4, one recovers (4.7) and (4.8) taking the
=4 limit of expressions (5.8). One also recovers factorizations (4.3) and
(4.4) taking the m =4 limit of factorizations (5.4) and (5.5).
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5.1. Comments: Pre-Bethe Ansatz and Gauge Transformations

All the examples of vertex models given here show that the number of
colors two, for the arrows of the vertex models, plays a special role for the
occurrence of polynomial growth.

This property is related to the fact that the transformation K can be
represented as a shift on a Jacobian variety C*/I". Where does this Jacobian
variety come from?

Actually, for all the vertex models for which the transposition ¢, can
be represented as (5.1) (namely monodromy matrices as in Section 5 or
d-dimensional vertex models with arrows taking two colors,...) one can
associate (see Appendix C) an algebraic curve of equation

det(Ap' —C— Dp+ pp'B)=0 (5.10)

As a byproduct, this provides a canonical Jacobian variety for such vertex
models, namely the Jacobian variety associated with curve (5.10). This
procedure, which associates with an R-matrix the algebraic curve (5.10),
originates from a key “factorization” relation closely related to the action
of the birational transformations K, namely the “pre-Bethe Ansatz” condi-
tion.'%**3%) More details are given in Appendix C.

In fact, it will be shown in forthcoming publications that one can
prove the polynomial growth of the calculations®® when the transforma-
tion K can be represented as a shift on a Jacobian variety C*/I". This
enables us to better understand why the number of colors two for the arrows
of the vertex models plays such a special role for the occurrence of polyno-
mial growth.

Let us also note that the curve (5.10) has appropriate invariance
properties with respect to “gaugelike” transformations generalizing the
weak-graph transformations.®® Taking into account the relation between
the transformation K and the “pre-Bethe Ansatz” condition'’ and therefore
the algebraic curve (5.10) or its associated Jacobian variety, it is not sur-
prising to see that these “gaugelike” transformations are also symmetries of
the transformation K, compatible with the factorizations (5.4) and (5.5) (see
Appendix D).

" The relevance of the “pre-Bethe Ansatz” condition is not clear as far as, for instance,
calculating the partition function is concerned, but its significance for the discrete sym-
metries considered here is well established*?): this is a consequence of the compatibility of
this condition with the transformation / together with the partial transposition , or ¢,.
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6. SOME COMMENTS ON THE GENERATING FUNCTIONS:
FROM VERTEX TO SPIN MODELS

For all the birational transformations described here, one remarks that
one always has the three following factorization relations:

det(M,) = fo.1- /5 f,,_l W AAPRY SRR SRPRELY At (6.1)
K(Mn)= n+1" f"o -1 fnz f:',sfa' n 4" f"" ! (6~2)

. K(M M
R(M,) = M) e (6.3)
dCt(M") .fn+l ﬁz—l ﬁj 2’ n 37 fpn
Let us introduce a new generating function for the (,:
Lx)=1+4+0x+ 07+ + - (6.4)

With this new generating function {(x), relation (6.1) simply reads

xa(x)={(x) - p(x) (6.5)
One can also introduce generating functions for the 1, and p,,:

nx)y=ne+nx+n,x>+n3x>+ - (6.6)
p(x)=1+p,x+p, x> +p3x>+ -+ (6.7)

One gets from relation (6.3) the following relation between a(x), f(x),
and p(x):

N+ Np(x)-B(x)=(14x)-a(x) (6.8)

which generalizes Eqs. (5.7) for an arbitrary N x N matrix.

Many more relations can be obtained among these various generating
functions a(x), B(x), u(x), v(x),....""?

Among these more or less involved generating functions, it appears
that two generating functions are especially simple, namely f(x) and par-
ticularly p(x). Let us give here the explicit expressions of p(x) for various
vertex models considered in this paper. For 1, for 4 x 4, as well as ¢ x ¢°,
matrices (see Sections 3.1 and 3.2) the expression for p(x) is

p(x) =1+ x2 (6.9)

while for ¢, for 29x 29 (or 2m x 2m) matrices [see Sections 4 and 5 and
Eq. (5.7)] p(x) 1s given by

plx)=—— (6.10)
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These two kinds of generalizations of the transformation f, for
arbitrary size of the matrices are of a quite different nature. In particular,
the size dependence of the generating functions [in particular, B(x)] is
quite different. It is simpler for the generalizations described in Sections 4
and 5 [compare, for instance, the expression for f(x) in (5.8) and (3.17)].
Note, however, that p(x) is remarkably simple for both kinds of size
generalizations, since it has zeros or poles only on the unit circle and it is
actually independent of the matrix size.

The polynomial, or exponential, growth of the calculations of the
iterations is made clear for the singularities of the other generating func-
tions a(x), B(x),.., or even the generating functions n(x) and {(x). This
provides a condition for the polynomial growth of the calculations, which
can therefore be checked quickly from relations (6.1), (6.3).

The polynomial growth of the calculations corresponds to poles on the
unit circle. In fact in all the examples we have introduced'~*) one only
gets Nth roots of unity in the denominators of the rational functions
a(x), f(x),..., and, most of the time, only x= +1 singularities. We have
obtained very few Nth roots of unity different from x = +1. One example
corresponds to an integrable subcase of a birational transformation
(denoted class IV in ref. 3), which yields, when restricted to this integrable
subcase, ®

_ dx
C(1=x)(1=x*)(1=x°)

B(x) (6.11)

Another interesting example corresponds to a (six-state chiral) edge
spin model*® for which a foliation in terms of elliptic functions exists.*
The analysis developed here, or in refs. 1-3 for vertex models, has to be
slightly modified"'?) when considering edge spin models or IRF models.
However, it is worth noticing that one gets, for these integrable birational
mappings, a generating function for the growth of the calculations where
third and fourth roots of unity occur™;

(L4 x+2x7 4+ 27 4+ 2x*Y) (14 2x + 27+ 2x7)
B (1—x)(1 —x*)(1—x*)

G(x) (6.12)

The growth of these coefficients, that is, the growth of the degree of the
successive iterations, is dominated by the coefficients of the expansion of

49
Gdom(x) = 1

—_—2(1—x)3 (6.13)
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which grows like 49(n + 1)(n + 2)/24. Another example is a five-state Potts
model®>? (symmetric and cyclic 5x 5 matrices), which yields integrable
birational mappings (a foliation of CP, in algebraic elliptic curves).'® For
this edge spin model the generating function for the growth of the calcula-
tions is given by!!4»!8

(1+x+2x?)?

A= (=) e

GPotls(x) =

The similarity with expression (6.12) is striking. The growth of these
coefficients is dominated by the coefficients of the expansion of

16

GPolls(x) — 3(1 — x)3

dom

(6.15)

Another interesting example of a spin model is the g-state standard
scalar Potts model on a triangular lattice with two- and three-site interac-
tions, introduced by Baxter ef al.'” (BTA). Because of the three-site inter-
actions on the up-pointing triangles, this model is not an edge spin model.
It can also be represented as a vertex model on a triangular lattice.!'”
It has been shown that the symmetry group generated by the inversion
relations yields birational representations of hyperbolic Coxeter groups.®®
Some of the generators of this group have been shown to yield algebraic
elliptic curves and even rational curves.®® Let us consider the factoriza-
tions corresponding to the iteration of one of these generators which yields
curves. The analysis of the polynomial growth of the degree of these
iterations is sketched in Appendix E and leads to a quite simple generating
function:

14 2x3

Garalx) SO—x (1)

(6.16)

This greater complexity of the generating function one encounters with
edge-spin models comes from the fact that the involution which plays the
role of the transpositions ¢,, t,,... for vertex models is a nonlinear transfor-
mation (namely the Hadamard inverse®®) which amounts to taking the
inverse of each entry of the matrix R[i, j]1— 1/R[i, j]. One cannot find, as
simply as for vertex models, “Pliicker-like” variables''’ of a reasonable

'® The birational transformations corresponding to these two examples of spin-edge
models‘®*”) can be “g-deformed,” this deformation preserving the integrability (namely the
foliation in elliptic curves of the parameter space).!'*3” It is worth noticing that these
g-deformed birational transformations have the same generating functions as (6.12) or
(6.14).



Discrete Symmetry Groups of Vertex Models 1235

degree that “linearize” the action of the matrix inversion I and of the other
involution: the algebraic expressions covariant under the action of the
action of the matrix inversion / and of the Hadamard inverse are of a
higher degree.*® In fact, it is always possible, after Kadanoff and
Wegner,®® to map a spin-edge model for which the edge Boltzmann
weight interaction depends on the difference between nearest-neighbor
spins onto a vertex model.®® Introducing the edge Boltzmann weight
interaction W(o,—o;) (associated with the horizontal bonds) between two
neighboring spins ¢, and ¢, and W(o,, 0,) another edge Boltzmann weight
(associated with the vertical bonds between two neighboring spins ¢, and
o,), the two bonds [o,—0,][0,—0,] being dual bonds, one can easily
associate a vertex Boltzmann weight given by

errl(i’ j! ka 1) = W(Ui_ aj) ) W(Uk - 0'/) (617)

with i=0,—0y, j=0,—0;,, k=0,—0,, and /=0,—0,;, and therefore
i+j+k+1=0.

This transformation maps the edge-spin model onto a vertex model,
thus allowing one to introduce linear involutions like ¢,, t,,... However,
this “linearization” of the problem multiplies by two the degree of all the
algebraic expressions encountered.

7. CONCLUSION

We have used the methods introduced in refs. 1-3 on various examples
of vertex models of lattice statistical mechanics. In particular, we have
analyzed the factorization properties of discrete symmetries of the param-
eter space of these lattice models, represented as birational transformations.

For all the examples introduced in this paper, which correspond to
matrices of arbitrary size, it has been shown that remarkable factorization
relations independent of the matrix size occur [see, for instance, (3.14),
(5.6)].

Different features have eerged from this study, namely the polynomial
growth of the complexity of the iterations of these birational transforma-
tions, the existence of recursion relations bearing on the factorized polyno-
mials f,, and the existence of deterinantal compatibility conditions like
(5.10). The relation between these properties and the integrability of these
lattice models of statistical mechanics, or more general structures like the
“quasiintegrability,”'® has been studied. The analysis of the factorizations
corresponding to a specific two-dimensional vertex model (the Stroganov
model; see Sections 3.3 and 3.4) has shown how the generic exponential
growth of the calculations does reduce to a polynomial growth when
the model becomes Yang-Baxter integrable. This gives a first example of
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the fact that the search for polynomial growth of the complexity of the
associated iterations provides a new way to analyze vertex models.®%3!

It has been shown that the (determinantal) compatibility condition
associated with the “pre-Bethe Amnsatz” (5.10) naturally yields algebraic
curves of quite high genus together with their associated Jacobian variety:
one could seek systematically for models (that is, specific patterns of matrix
Boltzmann weight) for which this genus becomes as small as possible.
These compatibility conditions yield as many curves (5.10) as the dimen-
sion d of the lattice (see Remark 1 in Appendix C): one should concentrate
on the models for which the d algebraic curves (5.10) are, as much as
possible, on the same footing (same genus,...).

The examples of birational transformations associated with wverfex
models, detailed here, enable us to clarify the occurrence of polynomial
growth of the complexity of the iterations: in particular, it has been shown,
using the examples of three-dimensional vertex models, that a polynomial
growth not only occurs with algebraic elliptic curves,”®'? but can also
occur for transformations yielding algebraic surfaces or even higher-dimen-
sional varieties. In this respect a very general three-dimensional vertex
model, the 64-state vertex model, emerges as a remarkable model illu-
strating such a situation (see Section 4).

In fact, it will be shown in forthcoming publications that one can
prove the polynomial growth of the calculations®®’ when the transforma-
tion K can be represented as a shift on a Jacobian variety C"/I.

The search for polynomial growth of the complexity of the associated
iterations could provide a new way to analyze three- or higher-dimensional
vertex models,®*") searching systematically for models where a Jacobian
variety of an algebraic curve occurs.®

Let us recall that Jacobian varieties of curves are particular Abelian
varieties depending only on 3g —3 moduli among the g(g+ 1)/2 param-
eters”® upon which the Abelian varieties depend.

Conversely, it is not clear whether a polynomial growth necessarily
implies the existence of an associated Jacobian variety (one can imagine a
situation where Abelian varieties which are not Jacobian varieties occur
together with polynomial growth, or K3 surfaces together with polynomial
growth,...). We will try in further publications to see if this polynomial
growth is necessarily related to Abelian varieties. We will also try to see to
what extent the product of elliptic curves is a situation favored in lattice
statistical mechanics.

19 Particular attention may be devoted to the subcase of hyperelliptic curves: the (analytical)
(3g — 3)-dimensional space of moduli (Teichmiiller space) has singularities corresponding to
the hyperelliptic curves which only depend on 2g — 1 moduli.

2 The period matrix of the theta functions of g variables has to be symmetric.
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APPENDIX A. POLYNOMIALS ASSOCIATED WITH
STROGANOV’'S MODEL

The X?, Y, and Z, defined in Section 3.4 read, up to n=35,

XP=b—1, Y,=2b+1, Z,=b+1
X=202~b—1+bc+ec, Y,=4b>—2b—2—bc—c
Z,=2b>—b—1—bc—c
XY =4b3+2b%c— 66> —bc* —bc+2—c*—¢
Yy =4—3bc—12b>+ 8b—2c + 2b’c + 3b%c — b*c?
—3bc?—2c? + 16b* — 16b°
Zy=2—bc—6b*+4b—c+2b’c — bc* — ¢ + 8b* — 8b*
XY =16b°—32b* + 16b*c + 4b> — 12b°c — 18b7c + 20b>
— b+ b*? —3bc® — bc® — 4b + 8bc — 4 + 6¢ — 23
Y, =16 — 3dbc — 96b% + 32b — 16¢ + 106b°c + 62b%c + 20b%c? — 27bc>
—~12¢2+2726% — 1286° + 8¢ + 96b° — 32065 — 110b*c + 57b°c?
+ 19bc* + 72b8¢c — 32b°c* — 80b°c — 8b*c® — 6bc?
—19b%¢* + 2b%c* + 8b%c* + 10bc* + 4c* + 128b7
Z,=8—16bc — 48b% + 16b — 8¢ + 48b°c + 32b%c + 10b%¢? — 14bc? + 136b*
— 64b° + 4¢® + 48b° — 160b° — 56b*c + 30b3c? + 9bc® + 32b%¢ — 16b°¢?
—32b% — 4b*c® — 4b*c® — 9b°c® + bc* + 4b%c* + Sbc® + 2¢* + 64b7
XY =48bc — 16 + 128b% + 10bc® — 16b + 32¢ + 8b%c® — 40b°¢?
—5b%* + 192b7 ¢ + 32b%¢* + 4c® + 12868 — 160b%c — 192b%c* + 16b°c?
— 16bc? — 4¢® — 400b° + 325 — 20c> + 176b° + 4165° 4 480b%c
+ 56b3c* + 39b%c* — 38bc* — 448b°c — 40b°c? + 48b°¢c
— 17b%c — 44b%c? + 76b%c> — 12b%¢c* + bPc* + 12bc* + dc* — 4487
Ys= —137¢®? — 130c®h — 32¢% + 24576b'° — 128 + 1032bc + 1152
+ 350bc® — 384b 4 320c + 200b%¢® — 562b%¢° 4 1662b°c* — 6886h°c*
— 794b%c* + 32448b8c — 26424b7c — 782b5¢c* — 696b4c>
+5968b7c? + 18885°c% + 96¢° + 5120b° — 34560b% — 7368b°c
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—2096b%¢ + 352b%¢? — 368bc? — 96¢* — 5760b* + 32006> — 272¢3
—10368b° + 18816b° + T776b%c + 2224b%c* + 602b%c* — 926bc>
—20784b%c — 5456b°c2 + 21048b°¢c + 28b%*c? — 704b%c? + 4084b3c?
— 1546b%c* + 27b%c* + 490bc* + 128¢* + 1267207 + 7744b°¢

+ 520067¢® — 199685'% + 488b%¢c> — 3104b8¢% 4 959h%¢* + 82b°¢3
+ 44535 4+ 6272b" ¢ + 115250 — 1856b°c2 — 312b%¢*
—18432b'" — 16¢7 + 409652 — 614b7¢* — 1536573

+ 13057 4 400b5¢> + 15b%¢8 + 86b°c® + 154b%c®

—4b%c” —28b*c” — 76b*c” — 100b%c” — 64bc”

Zs= —66c°b> — 64c®h — 16¢® + 122885'° — 64 + 512bc + 576b% + 176bc°
—192b 4+ 160c + 102b%c* — 388b5¢3 — 352b%¢° — 282b%¢® + 817h%¢*
—3456b°c® —361b%c* + 16128h% — 12864b7c + 2688b7¢c> + 105652
+48¢® + 25600° — 17280b% — 14b%c7 — 38b3¢c” — 50b%c7 — 32b¢
— 3648b%¢c — 1056b%c + 192b%c? — 176bc” — 48¢* — 2880b* + 16004°
— 136¢° — 5184b° 4 9408b° + 3936b%c + 105652 + 300b%¢?
—464bc® — 10464b°c — 2544b°c* + 10368b°c + 16b*c® — 432b%c?
+2048b3¢® — 759b3c* + 2bc* + 240bc? + 64c* + 6336b7 + 3584h°¢
+2608b7c® —9728b'% + 240b%c® — 1536b8¢? + 443b%¢* 4 40b°¢3
+ 23635 4+ 3072b" ¢ 4 512b'0¢2 — 7685°c* — 144b%c* — 9216b"!
—8¢” +2048b'% — 302b7c* — 768b°¢c> + 6657 ¢°
+202b%¢° + 768 + 41b°¢® + 75b%c® — 2b°c7

APPENDIX B
B1. Restricted Factorizations in Dimension Three:
Product of Elliptic Curves

Similar to what is done in Section 3.3, one can consider the “restricted
factorization problem” corresponding to the following initial matrix:

A B
R3D=<C D) (B.1)
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where the 4 x 4 submatrices 4, B, C, and D are of the form

N2
A‘(Az A3> (B.2)

where 4,, A,, and A4; are 2x2 matrices and 0 denotes the 2 x 2 matrix
with zero entries, and the form for matrices B, C, and D is similar to (B.2).
It is straightforward to see that a form like (B.1), together with (B.2), is
actually compatible with the action of the group generated by the matrix
inverse [ and r,.("®

For such matrices (B.1) and (B.2) one can see (permuting rows and
columns 34 and 5-6 of the 8 x8 matrix R,,) that the polynomials f,
defined by Eqgs. (4.2) factorize into the product of two polynomials. One
can show that these two polynomials F" and F'» actually correspond to
the action the birational transformation K associated with two 16-vertex
models (see Section 3.1) associated with the following two 4 x 4 matrices:

A, B Ay B
M“’=< ! ‘) and M<3>=< } 3) (B.3)
¢ ¢, D, ° ¢y D;
One gets therefore for the f,
fo=F-F (B4)

where each of the F{" and F'» satisfy independently the same recursion
relation, which is actually the recurrence occurring for the 16-vertex model
(see Section 3.1). This nonlinear recursion relation has been shown to yield
algebraic elliptic curves £.'~* Tt is thus clear, at least in subcase (B.2), that
the f,, do not satisfy a recursion relation [like (3.12)], but that the orbits
of the iteration of K are naturally associated with algebraic surfaces which
are the product of two algebraic elliptic curves: & =& x §.

From Eq. (B.4), one easily gets in this subcase [(B.1), (B.2)] that the
degrees of the f, and det(M,), namely f, and «,, can be written as sums
of two terms:

Bo=B" 480 ay=ol o) (B.5)

where the B9 (resp. the «'’) are the degrees of the F [resp. the
det(M,) "] with i=1, 3.

From Section 3.1 [see Egs. (3.7)], one immediately gets that B! =
B =2n(n+1) and ! =a® =4(2n*+ 1). This provides an example of a
quadratic growth associated with an algebraic surface (namely: & =46 x &).
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B2. A Three-Dimensional Generalization of the
Six-Vertex Model

Another example of “restricted factorization” corresponds to the ver-
tex model defined in refs. 8, 9, and 31, which can be seen as a three-dimen-
sional generalization of the six-vertex model.®" It corresponds to the
K-compatible conditions (4.1) together with the additional conditions

RiRB =0 if (i, 0, ) #(+1, +1, +1)

and

RUBB =0 i (i), dy, i) #E (=1, =1, —1)
and

RYLENFN=0 i (i, o j) 2 (+ 1 +1, +1) (B.6)
and

Riput='=0 i (jy o i) # (=1, ~1,=1)

This particular form for the 8 x 8 matrix (B.6) is not stable by the trans-
formation K [basically because the transposition ¢, does not preserve the
form (B.6)], but it is preserved under the action of K2.°'"?' Taking into
account the simplicity of this model, one can relax the matrix symmetry
condition (4.22). This gives [with notations (4.13)] the following 8 x 8
matrix:

a 00 0 0000
0 b ¢c 0On 000
0 e f 0 p 00O
3 000 A O i j O
R=1o ; | h 00 0 (B7)
0 0 ¢ 0 f e O
0 00n 0 ¢ b O
0 00O0O0OO0O O a

or, recalling the relabeling previously introduced {(1,2,3,4,5,6,7,8)—
(1,4,6,7, 8a553v2)= [(+ 17 +13 +1), (+ 1’_13—1 )a (_1’ + 1,_1)v (_1’—1: + 1)]

! This situation generalizes the one encountered in two dimensions with six-vertex models.
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and [(_15 _'1; _1)’ (_1’ +1> +1), (+1a _19 +1)’ (+1a +1’ _1)]}’ we
can write the two identical 4 x 4 matrices (4.14)

0

B¥= ! (B.8)

O O O 8
I > O
o0~ O

c

This model depends on ten homogeneous parameters. For this three-dimen-
sional generalization of the six-vertex model®?!" one can introduce the
same f,, as the ones given in Section 4.2. The corresponding matrices can be
seen to be products of 3 x 3 and 1 x | matrices. One straightforward conse-
quence is that all the determinants one calculates are perfect squares which
factorize into determinants of 3 x 3 matrices and terms corresponding to
the 1 x 1 blocks. This enables us to introduce variables which are the deter-
minants of these 3 x 3 matrices, which will be denoted g, in the following,
instead of the variables f, related to the determinant of the whole 8 x 8
matrix. Introducing two variables w, and w, related to two particular
entries of the matrix M, and its transform by K, one gets factorizations

(det(M,)) ' K(M,)
wo=(Mo)1, gn=—0_’ M,= .
Wo g1Wq
(M) aq _ (det(M,))'” _ K(M,)
= s gr=—"7""3_ MZ— 5
Wo WoW, gawpw, (B9)
(det(M,))"? K(M,)
=il . M= s
WoW1 &) WoWi £1 83
(det(M;))'” K(M;,)
84— 3 3 M4= S 5 >
WoW, g3 WoW, 8384
and, for arbitrary n,
K(M,,)=M"+l‘Wo'Wf'g,S,_l'g,,+] for neven (B 10)
K(M'")=M"+1'WS'W|'g,s,_['g,,+| for nodd
together with
(det(M,))"2 =g, -wo-wi-g}_, for neven (B.I1)
(det(M, )" =g,,\ -wa-w,-g>_, for nodd

822/78/5-6-4
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yielding for n>2

K(Mn) - Mn+l

R(M,)= =
(M.) det(M,) gu-1"8ns1 Wo W

(B.12)

Similarly, one can introduce the degrees of the determinants of these
matrices M, and the degrees of the successive polynomials g,, namely a,
and ﬁ,, and their corresponding generating functions a(x) and f(x). These
generating functions read

8(1 +x+x>—x*) 5\ X(3—2x)

0 , B.13
a(x) T+ 00 —x) B(x) (I—x) (B.13)
The exponents «, and S, read
2
A 5
a,=dn? 4 16n+6+2(—~1), f,=" ; " (B.14)

Again, one can study the “right action” of K on matrices M,
[Egs. (3.3}]. However, since the form of mtrix (B.7) is only preserved by
K?, the right action is a little bit more involved, namely

2g)k=8:8387wiwi,  8(g)xr=g4858  witw}' (B15)
64(g3) =858 gL Wi wit . '
and for arbitrary n
) S 3 @ ()
27 (g )k =8ns285 &1 WE W (B.16)

where the z{ are quadratic integers:

Zu)zw IO 2(3,=(7n+39)n
n 2 ] n " —_— 2
(0 =6nints),  ap=UE +29)”

The factorization scheme (B.10), (B.11) is not modified when the
matrix symmetry condition (4.22) hold. In contrast, if one relaxes the spin
reversal condition {4.10) (20 homogeneous parameters), the factorization
scheme (B.10} is reminiscent of the “stringlike” factorizations (4.3).

A more detailed analysis, with particular emphasis on the “pre-Bethe-
ansatz” conditions [see ref. 10 and (C.2) in the following], of this three-
dimensional generalization of the six-vertex model has been performed in
ref. 31.
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APPENDIX C. PRE-BETHE ANSATZ

Let us given here miscellaneous remarks explaining the occurrence
of algebraic curves like (5.10) in the analyzis of vertex models. For this
purpose let us first recall the relevance of a key “factorization” relation
compatible with the action of the birational transformations K, namely the
pre-Bethe-Ansatz condition."® Let us first recall the results of ref. 10 on the
16-vertex model (which corresponds to m=2 in the previous section).
The weak-graph duality'®® symmetries correspond to a “gauge group”
G =sl,xsl, which acts linearly on R by similarity transformtions (see
ref. 20 for details):

if g=g/xg,, gR)=g;'e;" R-g,8, (C.1)

Let us denote by 4 the group of birational transformations generated
by I, t,, and ¢,. The actions of G and # do not commute. However, G and
I do commute, and ¢, (resp. ¢,) sends orbits of G onto orbits of G. A group
larger than the gauge group G has naturally emerged in the analysis of the
symmetries of the 16-vertex model, a group we have denoted Ggepe.''®
Actually one of the keys to the Bethe Ansatz is the existence [see Eqgs.
(B.10), (B.11a) in ref. 407 of vectors which are pure tensor products (of the
form v&® w) and which R maps onto the pure tensor product v’ @ w’' (see
also refs. 10, 34, and 35). If

() e () ()

then the solution of the “pre-Bethe-Ansatz” equation‘'?’

Rov@w)=uw' @w’' (C.2)

satisfies the two biquadratic relations"®

L+lap—=1np +Lp>+ 1 p?— s+ 1) pp' — i3 pPp’

+lopp? +1,p°p*=0 (C.3)
L+lieqg—1isq +1lsqg®+1sq%—(lo—15) 99’ — 179°q’

+14997 +1sq°¢* =0 (C.4)

These two biquadratics are elliptic curves. Remarkably, when calculating
the modular invariant'") of these curves, one can actually see that these two
curves actually reduce to the same Weierstrass canonical form‘%*?

y2=4x3—g2x—g3 (C5)
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A group Ggeupe = s, X 5/, x s/, naturally acts on (C.2): the four copies of s/,
act respectively on v, w, v’, w'. This induces a linear action on R:

R‘*gl_Ll'gz_Ll'R'gm‘gzk (C.6)

The infinite-order transformations K and K, can both be represented as a
shift of the (spectral) parameter'®) enabling one to move along these
various elliptic curves: the two biquadratics (C.3) and (C.4) and the elliptic
curves generated by transformations K and K, in CP,;. This situation can
straightfowardly be generalized to 2m x 2m matrices [see the transposition
t, defined by (5.1) in Section 5], but now directions 1 and 2 are no longer
on the same footing: vectors w and w' have m coordinates instead of two.
Their elimination still yields a reltion similar to (C.3) but now of a higher
degree. The linear action (C.6) is changed into

R_’gz—Ll'R'gzk (C7)

1

Let us represent g, and g5, as 2m x 2m matrices, namely

Gar 0 _ G! 0
o p = d o= 2L C.
82r (o G) me g (0 G;t) (C5)

where G, and G,, are two m x m matrices.

Using notations (5.1) for the Boltzmann weight matrix, one can easily
see that this elimination yields the following determinantal relation between
pand p".

det(4p' — C— Dp+ pp'B)=0 (C.9)

This determinant is a polynomial of degree m in each variable p and p’. It
is important to note that this determinant is covariant under the
“gaugelike” transformtions (C.8):

det(4p'— C—Dp + pp'B)
— det(G,z)* - det(G,, ) "2 -det(Adp'— C—Dp+ pp'B)  (C.10)

The compatibility condition (5.10) is therefore invariant under the
“gaugelike” transformations (C.7).

We have performed an analysis for the m =4 case (more precisely, for
an 8 x 8 Boltzmann matrix corresponding to a three-dimensional vertex
model), getting biquartic relations.®!"’ Generally, for 2m x 2m matrices, one
gets relations of degree m both in p and p'. Curve (C9), except for the
remarkable m =2 case (the 16-vertex model!), for which the curve identifies
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with its Jacobian, is a curve of genus greater than one. Generically it is a
curve of genus?

g=2m-=2)2m—=1)2=2(m—=1)ym/2=(m—1)?

and Korepanov'*®! and Krichever®® have claimed that the group of bira-
tional transformations we study can actually be represented as a shift on
the Jacobian variety assoiated with curve (5.10). The transformation K
linearizes on the Jacobian variety: the transformation K corresponds to a
constant shift on the torus. The transformation K amounts to adding a
fixed element of the Albanese variety C#/I".

Remark 1. The analysis of 2m x2m matrices can be seen as a
preliminary study for the 24 x 2¢ matrices corresponding to d-dimensional
problems (see Section 4). One can similarly write down a d-dimensional
“pre-Bethe Ansatz” condition'®)

Ry, ®@v,® -+ ®c,)=u)@v3Q@ --- Qv (C.11)

The elimination of 2(d—1) vectors (for instance, v,---v, and v5---v})
yields d algebraic curves like (5.10). Among the various d-dimensional
R-matrices, the ones for which the genus of the previous d algebraic curves
are all equal and smaller than (m—1)>=(29"'—1)* are of particular

interest.

Remark 2. Further Generalizations. The “pre-Bethe-Ansatz”
condition (C.2) can be generalized to (n-m)x(n-m) matrices. Again
vectors w and w’ have m coordinates instead of two, but now the vectors
v and v’ have n components. Let us just write here the n =3 case. Let us
denote the components of vectors v and v’ and the (3m) x (3m) Boltzmann

matrix in terms of m x m matrices A4 ,,..., Ay as follows:
1 1 A, A, A,
V=1 P v'=| pi | Jr=| 44 As A
NP> P> A; Ag A

*2 A formula for getting the genus is, for example, Noether’s formula obtained assuming that
the curve of degree ¢ has only ordinary multiple points. Since we have only n-uple points,
this yields g = (d— 1){(d —2)/2 — Nn(n— 1)/2, where N is the number of n-uple points,3%
We have here rwo n-uple points. To see this one can, for instance, write curve (5.10) in a
homogeneous way, as the intersection of equations det(dp’'—Ct—Dp+1'B)=0 and
pp =1t



1246 Boukraa et al.

The elimination of vectors w and w' yields two determinantal conditions
(instead of one for n=2 and, generally, n=1 conditions for arbitrary #):

det((4,+ A, p,+ A3p,y)-pr—(A;+ Agp+ 45p,))=0  (C.12)

det((d,+ A, p,+A5p5) pi—(Aa+ Aspy+ A p2))=0  (C.13)

Curve (5.10) is thus replaced, for n =3, by an algebraic surface given by the

two conditions (C.12) and (C.13), and, for arbitrary n, by an (n—1)-

dimensional algebraic variety given by n—1 “determinantal conditions”
bearing on 2(n — 1) variables p,,..., p,,_, and p\,..., p,,_.

This simple remark enables us to understand better why the number of

colors two, for the arrows of the vertex models, plays such a special role for
the occurrence of polynomial growth.

APPENDIX D. GAUGE TRANSFORMATIONS

The two transformations g,z and g5,' are actually symmetries of the

transformation K corresponding to the transposition ¢, defined by (5.1).
With notations (7.24) one easily gets

K(g5, - M -gip) =det(g2p) -det(ga) ™' - 257 - K(M) - g2y (D.1)
K*(g3, - M -g25) = (det(gap) -det(gy) ™')™~V g3,' - K*(M)- g2 (D.2)
and for arbitrary n

K*(g3,' - M- gop) = (det(gap) -det(g,) ™')™ g5, - K*'(M) - gap

= (det(G) - det(GzL)—l)zzb’ : gZ_Ll K" (M) - gap
(D.3)

K+ gy - M- gyp)=(det(g2g) -det(gy,) ") g3 - K> TH (M) - g3,
= (det(Gyg) -det(Gyy )~ ')+t g - K> H(M) - goy

(D4)
with
_(2m=1)"-1 _(2m—1)"* 41
“2n — m ’ Zop+1 = 2m (DS)
For the inhomogeneous transformations K one also gets
K*(g3,' M- gop)= g3, - K*"(M)- 825 D6)

I%?’"Jrl(gz_l_l ‘M- gr) =g KM - 8ar
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This is a simple consequence of the relations corresponding to the two
transformations 7 and ¢,:

I(g3' - M - g,r)=det(g,z) -det(g,.) ™" - g3p - I(M) - g5,
=det(GZR)2 'd(:t(GzL)—2 : gz_Rl (M) g5,

and
tl(gz_Ll'M'gZR)=g2_Ll'tl(M)'g2R (D.7)

If one imposes det(G,z)=det(G,,), one gets an invariance under the
homogeneous transformations K2, but in fact one has, in general, a
covariance property which is actually a symmetry closely linked to the
homogeneity of the problem."?’ The f, and det(M,) transform very simply
under (C.7):

S (det(g,g) -det(gy, )~ ") - £,
= (det(g,z) - det(g,, )~ )2y, (D.8)
det(M,) — (det(g,z) -det(g,,) ')/ - det(M,,) (D.9)

In the m =2 case (16-vertex model; see Section 3.1) the f, satisfy recursion
relations like (3.12), yielding elliptic curves. These relations are actually
invariant under symmetry (D.8) (see, for instance, refs. 1 and 2). One notes
from (D.6) that the inhomogeneous variables x,=1,-1,, , the product of
two consecutive /, [/, =det(K"(M,))] [and therefore recursions (3.12)]
are actually invariant under (C.7): variables x, actually “gauge-away” this
quite large symmetry group (C.7). When considering the iterations of K2 or
K2, one can, without any loss of generality, “gauge-away” the parameters
corresponding to these (linear) transformations (C.8): one has two times
m?— 1 inhomogeneous parameters corresponding to G,; and G,z.

APPENDIX E. SOME GENERATING FUNCTIONS FOR
SPIN MODELS

Let us sketch here the analysis of the growth of the complexity of the
iterations for the two- and three-site interaction g-state standard scalar
Potts model on the triangular lattice.!!”3*®) One can introduce a gxgq
matrix Boltzmann weight for this model.**®*%’ One inversion relation, the
transformation /1, is the (homogeneous) matrix inversion, while other sym-
metries, playing the role of transformations ¢, in this paper, are permuta-
tions of the entries of this g x ¢ Boltzmann matrix.®® Let us consider an
infinite-order (homogeneous) birational transformation, which we denote



1248 Boukraa et al.

K, obtained from /, and one of these permutations (this transformation is
the transformation p,,/, in ref. 38). Similar to the situation encountered
with the three-dimensional generalization of the six-vertex model (see
Section 4.2.3), the determinant is replaced by two of its factors, which we
denote P, and P,. One has the following factorizations:

KM, s)=c,Cns 18y M, s (E.1)
where the ¢, and d, are (homogeneous) factorizing polynomials, and

P(M,)=c,c,_3d,_; (E.2)

PAM,)=c,_,c,_sci_,d,d,_; (E.3)

where P, and P, are polynomials, respectively of degree 1 and 2 in the
entries of the matrix M,. These two polynomials are in fact the two prime
factors of the determinant of the matrix M,,.

Introducing polynomials f,, such that (E.1) reads

K(Mn)z.fn'Mn+l (E4)

that is, f,,4=c¢,¢,414d,,,, we have that the product of P (M,) and
P,(M,) reads

P(M,) PoAM,)=[} fuss (E.5)

Introducing o,, the degree of the entries® of the M,, and f,, the
degree of the f, one gets from (E.4) and (E.5):

2an=/3n+an+l (E6)
3an=2ﬂn+ﬂn+3 (E7)

The elimination of the f§, yields the recursion relation
Oy ya—20,,3+20,,,—oa,=0 (E.8)
or equivalently for the corresponding generating function «(x), the relation
a(x)-(1—=2x+2x* —xH)=a(x) - (1 —x)*- (1 4+ x) = P(x) (E.9)
where P(x) is a polynomial of degree 3. The first coefficients of a(x) read

a(x)=14+2x+4x>+8x* + --- (E.10)

# Instead of the degree of the determinant of the M, in most of this paper.
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From these first coefficients one gets the expression for P(x):
P(x)=1+2x3 (E.1T1)

Relations (E.11) and (E.9) yield exact expressions for the generating func-
tion a(x) = Ggra(x) [see (6.16)].
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